Abstract Wearable strain sensors for movement tracking are a promising paradigm to improve clinical care for patients with neurological or musculoskeletal conditions, with further applicability to athletic wear, virtual reality, and next‐generation game controllers. Clothing‐like wearable strain sensors can support these use cases, as the fabrics used for clothing are generally lightweight and breathable, and interface with the skin in a manner that is mechanically and thermally familiar. Herein, a fabric capacitive strain sensor is presented and integrated into everyday clothing to measure human motions. The sensor is made of thin layers of breathable fabrics and exhibits high strains (>90%), excellent cyclic stability (>5000 cycles), and high water vapor transmission rates (≈50 g/h m2), the latter of which allows for sweat evaporation, an essential parameter of comfort. The sensor's functionality is verified under conditions similar to those experienced on the surface of the human body (35°C and % relative humidity) and after washing with fabric detergent. In addition, the fabric sensor shows stable capacitance at excitation frequencies up to 1 MHz, facilitating its low‐cost implementation in the Arduino environment. Finally, as a proof of concept, multiple fabric sensors are seamlessly integrated with commercial activewear to collect movement data. With the prioritization of breathability (air permeability and water vapor transmission), the fabric sensor design presented herein paves the way for future comfortable, unobtrusive, and discrete sensory clothing.
more »
« less
“Skin-like” fabric for personal moisture management
Personal moisture management fabrics that facilitate sweat transport away from the skin are highly desirable for wearer’s comfort and performance. Here, we demonstrate a “skin-like” directional liquid transport fabric, which enables continuous one-way liquid flow through spatially distributed channels acting like “sweating glands” yet repels external liquid contaminants. The water transmission rate can be 15 times greater than that of best commercial breathable fabrics. This exceptional property is achieved by creating gradient wettability channels across a predominantly superhydrophobic substrate. The flow directionality is explained by the Gibbs pinning criterion. The permeability, mechanical property, and abrasion resistance (up to 10,000 cycles) of the fabric were not affected by the treatment. In addition to functional clothing, this concept can be extended for developing materials for oil-water separation, wound dressing, geotechnical engineering, flexible microfluidics, and fuel cell membranes.
more »
« less
- Award ID(s):
- 1719875
- PAR ID:
- 10148243
- Date Published:
- Journal Name:
- Science Advances
- Volume:
- 6
- Issue:
- 14
- ISSN:
- 2375-2548
- Page Range / eLocation ID:
- eaaz0013
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Knitting turns yarn, a 1D material, into a 2D fabric that is flexible, durable, and can be patterned to adopt a wide range of 3D geometries. Like other mechanical metamaterials, the elasticity of knitted fabrics is an emergent property of the local stitch topology and pattern that cannot solely be attributed to the yarn itself. Thus, knitting can be viewed as an additive manufacturing technique that allows for stitch-by-stitch programming of elastic properties and has applications in many fields ranging from soft robotics and wearable electronics to engineered tissue and architected materials. However, predicting these mechanical properties based on the stitch type remains elusive. Here we untangle the relationship between changes in stitch topology and emergent elasticity in several types of knitted fabrics. We combine experiment and simulation to construct a constitutive model for the nonlinear bulk response of these fabrics. This model serves as a basis for composite fabrics with bespoke mechanical properties, which crucially do not depend on the constituent yarn.more » « less
-
Knitting interloops one-dimensional yarns into three-dimensional fabrics that exhibit behaviour beyond their constitutive materials. How extensibility and anisotropy emerge from the hierarchical organization of yarns into knitted fabrics has long been unresolved. We seek to unravel the mechanical roles of tensile mechanics, assembly and dynamics arising from the yarn level on fabric nonlinearity by developing a yarn-based dynamical model. This physically validated model captures the mechanical response of knitted fabrics, analogous to flexible metamaterials and biological fibre networks due to geometric nonlinearity within such hierarchical systems. Fabric anisotropy originates from observed yarn–yarn rearrangements during alignment dynamics and is topology-dependent. This yarn-based model also provides a design space of knitted fabrics to embed functionalities by varying geometric configuration and material property in instructed procedures compatible to machine manufacturing. Our hierarchical approach to build up a knitted fabric computationally modernizes an ancient craft and represents a first step towards mechanical programmability of knitted fabrics in wide engineering applications.more » « less
-
Water harvesting from air is desired for decentralized water supply wherever water is needed. When water vapor is condensed as droplets on a surface the unremoved droplets act as thermal barriers. A surface that can provide continual droplet-free areas for nucleation is favorable for condensation water harvesting. Here, we report a flow-separation condensation mode on a hydrophilic reentrant slippery liquid-infused porous surface (SLIPS) that rapidly removes droplets with diameters above 50 μm. The slippery reentrant channels lock the liquid columns inside and transport them to the end of each channel. We demonstrate that the liquid columns can harvest the droplets on top of the hydrophilic reentrant SLIPS at a high droplet removal frequency of 130 Hz/mm 2 . The sustainable flow separation without flooding increases the water harvesting rate by 110% compared to the state-of-the-art hydrophilic flat SLIPS. Such a flow-separation condensation approach paves a way for water harvesting.more » « less
-
Polymeric sensors on fabrics have vast potential toward the development of versatile applications, particularly when the ready-made wearable or fabric can be directly coated. However, traditional coating approaches, such as solution-based methods, have limitations in achieving uniform and thin films because of the poor surface wettability of fabrics. Herein, to realize a uniform poly(3,4-ethylenedioxythiophene) (PEDOT) layer on various everyday fabrics, we use oxidative chemical vapor deposition (oCVD). The oCVD technique is a unique method capable of forming patterned polymer films with controllable thicknesses while maintaining the inherent advantages of fabrics, such as exceptional mechanical stability and breathability. Utilizing the superior characteristics of oCVD PEDOT, we succeed in fabricating blood pressure– and respiratory rate–monitoring sensors by directly depositing and patterning PEDOT on commercially available disposable gloves and masks, respectively. Those results are expected to pave efficient and facile ways for skin-compatible and affordable sensors for personal health care monitoring.more » « less
An official website of the United States government

