skip to main content


Title: “Skin-like” fabric for personal moisture management
Personal moisture management fabrics that facilitate sweat transport away from the skin are highly desirable for wearer’s comfort and performance. Here, we demonstrate a “skin-like” directional liquid transport fabric, which enables continuous one-way liquid flow through spatially distributed channels acting like “sweating glands” yet repels external liquid contaminants. The water transmission rate can be 15 times greater than that of best commercial breathable fabrics. This exceptional property is achieved by creating gradient wettability channels across a predominantly superhydrophobic substrate. The flow directionality is explained by the Gibbs pinning criterion. The permeability, mechanical property, and abrasion resistance (up to 10,000 cycles) of the fabric were not affected by the treatment. In addition to functional clothing, this concept can be extended for developing materials for oil-water separation, wound dressing, geotechnical engineering, flexible microfluidics, and fuel cell membranes.  more » « less
Award ID(s):
1719875
NSF-PAR ID:
10148243
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Science Advances
Volume:
6
Issue:
14
ISSN:
2375-2548
Page Range / eLocation ID:
eaaz0013
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Wearable strain sensors for movement tracking are a promising paradigm to improve clinical care for patients with neurological or musculoskeletal conditions, with further applicability to athletic wear, virtual reality, and next‐generation game controllers. Clothing‐like wearable strain sensors can support these use cases, as the fabrics used for clothing are generally lightweight and breathable, and interface with the skin in a manner that is mechanically and thermally familiar. Herein, a fabric capacitive strain sensor is presented and integrated into everyday clothing to measure human motions. The sensor is made of thin layers of breathable fabrics and exhibits high strains (>90%), excellent cyclic stability (>5000 cycles), and high water vapor transmission rates (≈50 g/h m2), the latter of which allows for sweat evaporation, an essential parameter of comfort. The sensor's functionality is verified under conditions similar to those experienced on the surface of the human body (35°C and % relative humidity) and after washing with fabric detergent. In addition, the fabric sensor shows stable capacitance at excitation frequencies up to 1 MHz, facilitating its low‐cost implementation in the Arduino environment. Finally, as a proof of concept, multiple fabric sensors are seamlessly integrated with commercial activewear to collect movement data. With the prioritization of breathability (air permeability and water vapor transmission), the fabric sensor design presented herein paves the way for future comfortable, unobtrusive, and discrete sensory clothing.

     
    more » « less
  2. Abstract

    Knitting turns yarn, a 1D material, into a 2D fabric that is flexible, durable, and can be patterned to adopt a wide range of 3D geometries. Like other mechanical metamaterials, the elasticity of knitted fabrics is an emergent property of the local stitch topology and pattern that cannot solely be attributed to the yarn itself. Thus, knitting can be viewed as an additive manufacturing technique that allows for stitch-by-stitch programming of elastic properties and has applications in many fields ranging from soft robotics and wearable electronics to engineered tissue and architected materials. However, predicting these mechanical properties based on the stitch type remains elusive. Here we untangle the relationship between changes in stitch topology and emergent elasticity in several types of knitted fabrics. We combine experiment and simulation to construct a constitutive model for the nonlinear bulk response of these fabrics. This model serves as a basis for composite fabrics with bespoke mechanical properties, which crucially do not depend on the constituent yarn.

     
    more » « less
  3. Abstract

    Heavy orographic snowfall can disrupt transportation and threaten lives and property in mountainous regions but benefits water resources, winter sports, and tourism. Little Cottonwood Canyon (LCC) in northern Utah’s Wasatch Range is one of the snowiest locations in the interior western United States and frequently observes orographic snowfall extremes with threats to transportation, structures, and public safety due to storm-related avalanche hazards. Using manual new-snow and liquid precipitation equivalent (LPE) observations, ERA5 reanalyses, and operational radar data, this paper examines the characteristics of cool-season (October–April) 12-h snowfall extremes in upper LCC. The 12-h extremes, defined based on either 95th percentile new snow or LPE, occur for a wide range of crest-level flow directions. The distribution of LPE extremes is bimodal with maxima for south-southwest or north-northwest flow, whereas new-snow extremes occur most frequently during west-northwest flow, which features colder storms with higher snow-to-liquid ratios. Both snowfall and LPE extremes are produced by diverse synoptic patterns, including inland-penetrating or decaying atmospheric rivers from the south through northwest that avoid the southern high Sierra Nevada, frontal systems, post-cold-frontal northwesterly flow, south-southwesterly cold-core flow, and closed low pressure systems. Although often associated with heavy precipitation in other mountainous regions, the linkages between local integrated water vapor transport (IVT) and orographic precipitation extremes in LCC are relatively weak, and during post-cold-frontal northwesterly flow, highly localized and intense snowfall can occur despite low IVT. These results illustrate the remarkable diversity of storm characteristics producing orographic snowfall extremes at this interior continental mountain location.

    Significance Statement

    Little Cottonwood Canyon in northern Utah’s central Wasatch Range frequently experiences extreme snowfall events that pose threats to lives and property. In this study, we illustrate the large diversity of storm characteristics that produce this extreme snowfall. Meteorologists commonly use the amount of water vapor transport in the atmosphere to predict heavy mountain precipitation, but that metric has limited utility in Little Cottonwood Canyon where heavy snowfall can occur with lower values of such transport. Our results can aid weather forecasting in the central Wasatch Range and have implications for understanding precipitation processes in mountain ranges throughout the world.

     
    more » « less
  4. Water transport inside carbon nano-tubes (CNTs) has attracted considerable attention due to its nano-fluidic properties, its importance in nonporous systems, and the wide range of applications in membrane desalination and biological medicine. Recent studies show an enhancement of water diffusion inside nano-channels depending on the size of the nano-confinement. However, the underlying mechanism of this enhancement is not well understood yet. In this study, we performed Molecular Dynamics (MD) simulations to study water flow inside CNT systems. The length of CNTs considered in this study is 20 nm, but their diameters vary from 1 to 10 nm. The simulations are conducted at temperatures ranging from 260 K to 320 K. We observe that water molecules are arranged into coaxial water tubular sheets. The number of these tubular sheets depends on the CNT size. Further analysis reveals that the diffusion of water molecules along the CNT axis deviates from the Arrhenius temperature dependence. The non-Arrhenius relationship results from a fragile liquid-like water component persisting at low temperatures with fragility higher than that of the bulk water. 
    more » « less
  5. Abstract

    Relationships between the recrystallized grain size and stress are investigated for experimentally deformed water‐added quartz aggregates. For stresses ≥100 MPa there is a variation in the measured recrystallized grain size for a given stress. This variation correlates with a change in thec‐axis fabric in general shear experiments, where samples with larger recrystallized grain sizes for a given stress have dominantly prism c‐axis fabrics and samples with smaller recrystallized grain sizes for a given stress have dominantly basal c‐axis fabrics. The dislocation creep flow law also changes at conditions where these twoc‐axis fabrics form (Tokle et al., 2019,https://doi.org/10.1016/j.epsl.2018.10.017). Using the wattmeter model (Austin & Evans, 2007,https://doi.org/10.1130/G23244A.1), different piezometric relationships are quantified for samples that develop prism and basal c‐axis fabrics, respectively. The wattmeter model is sensitive to grain growth kinetics; a new grain growth law for quartz is formulated based on reanalysis of microstructures in samples from previous work. The activation enthalpies and water fugacity exponents for our grain growth law and dislocation creep flow laws are the same within error, suggesting the recrystallized grain size versus stress relationships are nearly independent of temperature and water fugacity, consistent with laboratory observations. The wattmeters successfully predict the recrystallized grain size versus stress relationships of all quartzite samples from experiments with added water. These results support the use and extrapolation of the wattmeter model for both experimental and geologic conditions to investigate the stress state and grain size evolution of quartz rich rocks.

     
    more » « less