We provide a general framework for computing mixing times of finite Markov chains when its minimal ideal is left zero. Our analysis is based on combining results by Brown and Diaconis with our previous work on stationary distributions of finite Markov chains. We introduce a new Markov chain on linear extensions of a poset with n vertices, which is a variant of the promotion Markov chain of Ayyer, Klee and the last author, and show that it has a mixing time O(n log n).
more »
« less
Normal distributions of finite Markov chains
We show that the stationary distribution of a finite Markov chain can be expressed as the sum of certain normal distributions. These normal distributions are associated to planar graphs consisting of a straight line with attached loops. The loops touch only at one vertex either of the straight line or of another attached loop. Our analysis is based on our previous work, which derives the stationary distribution of a finite Markov chain using semaphore codes on the Karnofsky–Rhodes and McCammond expansion of the right Cayley graph of the finite semigroup underlying the Markov chain.
more »
« less
- PAR ID:
- 10148320
- Date Published:
- Journal Name:
- International Journal of Algebra and Computation
- Volume:
- 29
- Issue:
- 08
- ISSN:
- 0218-1967
- Page Range / eLocation ID:
- 1431 to 1449
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We provide a general framework for computing mixing times of finite Markov chains when its minimal ideal is left zero. Our analysis is based on combining results by Brown and Diaconis with our previous work on stationary distributions of finite Markov chains. We introduce a new Markov chain on linear extensions of a poset with n vertices, which is a variant of the promotion Markov chain of Ayyer, Klee and the last author, and show that it has a mixing time O(n log n).more » « less
-
Abstract Let G be a finite group. Let $H, K$ be subgroups of G and $$H \backslash G / K$$ the double coset space. If Q is a probability on G which is constant on conjugacy classes ( $$Q(s^{-1} t s) = Q(t)$$ ), then the random walk driven by Q on G projects to a Markov chain on $$H \backslash G /K$$ . This allows analysis of the lumped chain using the representation theory of G . Examples include coagulation-fragmentation processes and natural Markov chains on contingency tables. Our main example projects the random transvections walk on $$GL_n(q)$$ onto a Markov chain on $$S_n$$ via the Bruhat decomposition. The chain on $$S_n$$ has a Mallows stationary distribution and interesting mixing time behavior. The projection illuminates the combinatorics of Gaussian elimination. Along the way, we give a representation of the sum of transvections in the Hecke algebra of double cosets, which describes the Markov chain as a mixture of Metropolis chains. Some extensions and examples of double coset Markov chains with G a compact group are discussed.more » « less
-
Markov chain Monte Carlo algorithms have important applications in counting problems and in machine learning problems, settings that involve estimating quantities that are difficult to compute exactly. How much can quantum computers speed up classical Markov chain algorithms? In this work we consider the problem of speeding up simulated annealing algorithms, where the stationary distributions of the Markov chains are Gibbs distributions at temperatures specified according to an annealing schedule. We construct a quantum algorithm that both adaptively constructs an annealing schedule and quantum samples at each temperature. Our adaptive annealing schedule roughly matches the length of the best classical adaptive annealing schedules and improves on nonadaptive temperature schedules by roughly a quadratic factor. Our dependence on the Markov chain gap matches other quantum algorithms and is quadratically better than what classical Markov chains achieve. Our algorithm is the first to combine both of these quadratic improvements. Like other quantum walk algorithms, it also improves on classical algorithms by producing “qsamples” instead of classical samples. This means preparing quantum states whose amplitudes are the square roots of the target probability distribution. In constructing the annealing schedule we make use of amplitude estimation, and we introduce a method for making amplitude estimation nondestructive at almost no additional cost, a result that may have independent interest. Finally we demonstrate how this quantum simulated annealing algorithm can be applied to the problems of estimating partition functions and Bayesian inference.more » « less
-
A source provides status updates to monitors through a network with state defined by a continuous-time finite Markov chain. An age of information (AoI) metric is used to characterize timeliness by the vector of ages tracked by the monitors. Based on a stochastic hybrid systems (SHS) approach, first order linear differential equations are derived for the temporal evolution of both the moments and the moment generating function (MGF) of the age vector components. It is shown that the existence of a non-negative fixed point for the first moment is sufficient to guarantee convergence of all higher order moments as well as a region of convergence for the stationary MGF vector of the age. The stationary MGF vector is then found for the age on a line network of preemptive memoryless servers. From this MGF, it is found that the age at a node is identical in distribution to the sum of independent exponential service times. This observation is then generalized to linear status sampling networks in which each node receives samples of the update process at each preceding node according to a renewal point process. For each node in the line, the age is shown to be identical in distribution to a sum of independent renewal process age random variables.more » « less
An official website of the United States government

