skip to main content


Title: Autonomous Tracking and Sampling of the Deep Chlorophyll Maximum Layer in an Open-Ocean Eddy by a Long-Range Autonomous Underwater Vehicle
Phytoplankton communities residing in the open ocean, the largest habitat on Earth, play a key role in global primary production. Through their influence on nutrient supply to the euphotic zone, open-ocean eddies impact the magnitude of primary production and its spatial and temporal distributions. It is important to gain a deeper understanding of the microbial ecology of marine ecosystems under the influence of eddy physics with the aid of advanced technologies. In March and April 2018, we deployed autonomous underwater and surface vehicles in a cyclonic eddy in the North Pacific Subtropical Gyre to investigate the variability of the microbial community in the deep chlorophyll maximum (DCM) layer. One long-range autonomous underwater vehicle (LRAUV) carrying a third-generation Environmental Sample Processor (3G-ESP) autonomously tracked and sampled the DCM layer for four days without surfacing. The sampling LRAUV’s vertical position in the DCM layer was maintained by locking onto the isotherm corresponding to the chlorophyll peak. The vehicle ran on tight circles while drifting with the eddy current. This mode of operation enabled a quasi-Lagrangian time series focused on sampling the temporal variation of the DCM population. A companion LRAUV surveyed a cylindrical volume around the sampling LRAUV to monitor spatial and temporal variation in contextual water column properties. The simultaneous sampling and mapping enabled observation of DCM microbial community in its natural frame of reference.  more » « less
Award ID(s):
1756517
NSF-PAR ID:
10148573
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; « less
Date Published:
Journal Name:
IEEE Journal of Oceanic Engineering
ISSN:
0364-9059
Page Range / eLocation ID:
1 to 14
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The deep chlorophyll maximum (DCM) layer is an ecologically important feature of the open ocean. The DCM cannot be observed using aerial or satellite remote sensing; thus, in situ observations are essential. Further, understanding the responses of microbes to the environmental processes driving their metabolism and interactions requires observing in a reference frame that moves with a plankton population drifting in ocean currents, i.e., Lagrangian. Here, we report the development and application of a system of coordinated robots for studying planktonic biological communities drifting within the ocean. The presented Lagrangian system uses three coordinated autonomous robotic platforms. The focal platform consists of an autonomous underwater vehicle (AUV) fitted with a robotic water sampler. This platform localizes and drifts within a DCM community, periodically acquiring samples while continuously monitoring the local environment. The second platform is an AUV equipped with environmental sensing and acoustic tracking capabilities. This platform characterizes environmental conditions by tracking the focal platform and vertically profiling in its vicinity. The third platform is an autonomous surface vehicle equipped with satellite communications and subsea acoustic tracking capabilities. While also acoustically tracking the focal platform, this vehicle serves as a communication relay that connects the subsea robot to human operators, thereby providing situational awareness and enabling intervention if needed. Deployed in the North Pacific Ocean within the core of a cyclonic eddy, this coordinated system autonomously captured fundamental characteristics of the in situ DCM microbial community in a manner not possible previously.

     
    more » « less
  2. The goal of the EXport Processes in the Ocean from RemoTe Sensing (EXPORTS) field campaign is to develop a predictive understanding of the export, fate, and carbon cycle impacts of global ocean net primary production. To accomplish this goal, observations of export flux pathways, plankton community composition, food web processes, and optical, physical, and biogeochemical (BGC) properties are needed over a range of ecosystem states. Here we introduce the first EXPORTS field deployment to Ocean Station Papa in the Northeast Pacific Ocean during summer of 2018, providing context for other papers in this special collection. The experiment was conducted with two ships: a Process Ship, focused on ecological rates, BGC fluxes, temporal changes in food web, and BGC and optical properties, that followed an instrumented Lagrangian float; and a Survey Ship that sampled BGC and optical properties in spatial patterns around the Process Ship. An array of autonomous underwater assets provided measurements over a range of spatial and temporal scales, and partnering programs and remote sensing observations provided additional observational context. The oceanographic setting was typical of late-summer conditions at Ocean Station Papa: a shallow mixed layer, strong vertical and weak horizontal gradients in hydrographic properties, sluggish sub-inertial currents, elevated macronutrient concentrations and low phytoplankton abundances. Although nutrient concentrations were consistent with previous observations, mixed layer chlorophyll was lower than typically observed, resulting in a deeper euphotic zone. Analyses of surface layer temperature and salinity found three distinct surface water types, allowing for diagnosis of whether observed changes were spatial or temporal. The 2018 EXPORTS field deployment is among the most comprehensive biological pump studies ever conducted. A second deployment to the North Atlantic Ocean occurred in spring 2021, which will be followed by focused work on data synthesis and modeling using the entire EXPORTS data set. 
    more » « less
  3. null (Ed.)
    Ocean ecosystems have spatiotemporal variability and dynamic complexity that require a long-term deployment of an autonomous underwater vehicle for data collection. A new generation of long-range autonomous underwater vehicles (LRAUVs), such as the Slocum glider and Tethys-class AUV, has emerged with high endurance, long-range, and energy-aware capabilities. These new vehicles provide an effective solution to study different oceanic phenomena across multiple spatial and temporal scales. For these vehicles, the ocean environment has forces and moments from changing water currents which are generally on the order of magnitude of the operational vehicle velocity. Therefore, it is not practical to generate a simple trajectory from an initial location to a goal location in an uncertain ocean, as the vehicle can deviate significantly from the prescribed trajectory due to disturbances resulted from water currents. Since state estimation remains challenging in underwater conditions, feedback planning must incorporate state uncertainty that can be framed into a stochastic energy-aware path planning problem. This article presents an energy-aware feedback planning method for an LRAUV utilizing its kinematic model in an underwater environment under motion and sensor uncertainties. Our method uses ocean dynamics from a predictive ocean model to understand the water flow pattern and introduces a goal-constrained belief space to make the feedback plan synthesis computationally tractable. Energy-aware feedback plans for different water current layers are synthesized through sampling and ocean dynamics. The synthesized feedback plans provide strategies for the vehicle that drive it from an environment’s initial location toward the goal location. We validate our method through extensive simulations involving the Tethys vehicle’s kinematic model and incorporating actual ocean model prediction data. 
    more » « less
  4. Eastern Boundary Systems support major fisheries whose early life stages depend on upwelling production. Upwelling can be highly variable at the regional scale, with substantial repercussions for new productivity and microbial loop activity. Studies that integrate the classic trophic web based on new production with the microbial loop are rare due to the range in body forms and sizes of the taxa. Underwater imaging can overcome this limitation, and with machine learning, enables fine resolution studies spanning large spatial scales. We used theIn-situIchthyoplankton Imaging System (ISIIS) to investigate the drivers of plankton community structure in the northern California Current, sampled along the Newport Hydrographic (NH) and Trinidad Head (TR) lines, in OR and CA, respectively. The non-invasive imaging of particles and plankton over 1644km in the winters and summers of 2018 and 2019 yielded 1.194 billion classified plankton images. Combining nutrient analysis, flow cytometry, and 16S rRNA gene sequencing of the microbial community with mesoplankton underwater imaging enabled us to study taxa from 0.2µm to 15cm, including prokaryotes, copepods, ichthyoplankton, and gelatinous forms. To assess community structure, >2000 single-taxon distribution profiles were analyzed using high resolution spatial correlations. Co-occurrences on the NH line were consistently significantly higher off-shelf while those at TR were highest on-shelf. Random Forests models identified the concentrations of microbial loop associated taxa such as protists,Oithonacopepods, and appendicularians as important drivers of co-occurrences at NH line, while at TR, cumulative upwelling and chlorophyllawere of the highest importance. Our results indicate that the microbial loop is driving plankton community structure in intermittent upwelling systems such as the NH line and supports temporal stability, and further, that taxa such as protists,Oithonacopepods, and appendicularians connect a diverse and functionally redundant microbial community to stable plankton community structure. Where upwelling is more continuous such as at TR, primary production may dominate patterns of community structure, obscuring the underlying role of the microbial loop. Future changes in upwelling strength are likely to disproportionately affect plankton community structure in continuous upwelling regions, while high microbial loop activity enhances community structure resilience.

     
    more » « less
  5. Summary

    The physical and biological dynamics that influence phytoplankton communities in the oligotrophic ocean are complex, changing across broad temporal and spatial scales. Eukaryotic phytoplankton (e.g., diatoms), despite their relatively low abundance in oligotrophic waters, are responsible for a large component of the organic matter flux to the ocean interior. Mesoscale eddies can impact both microbial community structure and function, enhancing primary production and carbon export, but the mechanisms that underpin these dynamics are still poorly understood. Here, mesoscale eddy influences on the taxonomic diversity and expressed functional profiles of surface communities of microeukaryotes and particle‐associated heterotrophic bacteria from the North Pacific Subtropical Gyre were assessed over 2 years (spring 2016 and summer 2017). The taxonomic diversity of the microeukaryotes significantly differed by eddy polarity (cyclonic versus anticyclonic) and between sampling seasons/years and was significantly correlated with the taxonomic diversity of particle‐associated heterotrophic bacteria. The expressed functional profile of these taxonomically distinct microeukaryotes varied consistently as a function of eddy polarity, with cyclones having a different expression pattern than anticyclones, and between sampling seasons/years. These data suggest that mesoscale forcing, and associated changes in biogeochemistry, could drive specific physiological responses in the resident microeukaryote community, independent of species composition.

     
    more » « less