skip to main content

Title: Analysis of a 3D nonlinear moving boundary problem describing fluid-mesh-sell interaction
Abstract. We consider a nonlinear, moving boundary, fluid-structure interaction problem between a time dependent incompressible, viscous fluid flow, and an elastic structure composed of a cylindrical shell supported by a mesh of elastic rods. The fluid flow is modeled by the time-dependent Navier- Stokes equations in a three-dimensional cylindrical domain, while the lateral wall of the cylinder is modeled by the two-dimensional linearly elastic Koiter shell equations coupled to a one-dimensional system of conservation laws defined on a graph domain, describing a mesh of curved rods. The mesh supported shell allows displacements in all three spatial directions. Two-way coupling based on kinematic and dynamic coupling conditions is assumed between the fluid and composite structure, and between the mesh of curved rods and Koiter shell. Problems of this type arise in many ap- plications, including blood flow through arteries treated with vascular prostheses called stents. We prove the existence of a weak solution to this nonlinear, moving boundary problem by using the time discretization via Lie operator splitting method combined with an Arbitrary Lagrangian-Eulerian approach, and a non-trivial extension of the Aubin-Lions-Simon compactness result to problems on moving domains.
Award ID(s):
Publication Date:
Journal Name:
Transactions of the American Mathematical Society
Sponsoring Org:
National Science Foundation
More Like this
  1. A flow vessel with an elastic wall can deform significantly due to viscous fluid flow within it, even at vanishing Reynolds number (no fluid inertia). Deformation leads to an enhancement of throughput due to the change in cross‐sectional area. The latter gives rise to a non‐constant pressure gradient in the flow‐wise direction and, hence, to a nonlinear flow rate–pressure drop relation (unlike the Hagen–Poiseuille law for a rigid tube). Many biofluids are non‐Newtonian, and are well approximated by generalized Newtonian (say, power‐law) rheological models. Consequently, we analyze the problem of steady low Reynolds number flow of a generalized Newtonian fluidmore »through a slender elastic tube by coupling fluid lubrication theory to a structural problem posed in terms of Donnell shell theory. A perturbative approach (in the slenderness parameter) yields analytical solutions for both the flow and the deformation. Using matched asymptotics, we obtain a uniformly valid solution for the tube's radial displacement, which features both a boundary layer and a corner layer caused by localized bending near the clamped ends. In doing so, we obtain a “generalized Hagen–Poiseuille law” for soft microtubes. We benchmark the mathematical predictions against three‐dimensional two‐way coupled direct numerical simulations (DNS) of flow and deformation performed using the commercial computational engineering platform by ANSYS. The simulations show good agreement and establish the range of validity of the theory. Finally, we discuss the implications of the theory on the problem of the flow‐induced deformation of a blood vessel, which is featured in some textbooks.« less
  2. Abstract Elastic gridshell is a class of net-like structure formed by an ensemble of elastically deforming rods coupled through joints, such that the structure can cover large areas with low self-weight and allow for a variety of aesthetic configurations. Gridshells, also known as X-shells or Cosserat Nets, are a planar grid of elastic rods in its undeformed configuration. The end points of the rods are constrained and positioned on a closed curve—the final boundary—to actuate the structure into a 3D shape. Here, we report a discrete differential geometry-based numerical framework to study the geometrically nonlinear deformation of gridshell structures, accountingmore »for non-trivial bending-twisting coupling at the joints. The form-finding problem of obtaining the undeformed planar configuration given the target convex 3D topology is then investigated. For the forward (2D to 3D) physically based simulation, we decompose the gridshell structure into multiple one-dimensional elastic rods and simulate their deformation by the well-established discrete elastic rods (DER) algorithm. A simple penalty energy between rods and linkages is used to simulate the coupling between two rods at the joints. For the inverse problem associated with form-finding (3D to 2D), we introduce a contact-based algorithm between the elastic gridshell and a rigid 3D surface, where the rigid surface describes the target shape of the gridshell upon actuation. This technique removes the need of several forward simulations associated with conventional optimization algorithms and provides a direct solution to the inverse problem. Several examples—hemispherical cap, paraboloid, and hemi-ellipsoid—are used to show the effectiveness of the inverse design process.« less
  3. Abstract In this paper, we present an open-source software library that can be used to numerically simulate the advection and diffusion of a chemical concentration or heat density in a viscous fluid where a moving, elastic boundary drives the fluid and acts as a source or sink. The fully-coupled fluid-structure interaction problem of an elastic boundary in a viscous fluid is solved using Peskin’s immersed boundary method. The addition or removal of the concentration or heat density from the boundary is solved using an immersed boundary-like approach in which the concentration is spread from the immersed boundary to the fluidmore »using a regularized delta function. The concentration or density over time is then described by the advection-diffusion equation and numerically solved. This functionality has been added to our software library, IB2d , which provides an easy-to-use immersed boundary method in two dimensions with full implementations in MATLAB and Python. We provide four examples that illustrate the usefulness of the method. A simple rubber band that resists stretching and absorbs and releases a chemical concentration is simulated as a first example. Complete convergence results are presented for this benchmark case. Three more biological examples are presented: (1) an oscillating row of cylinders, representative of an idealized appendage used for filter-feeding or sniffing, (2) an oscillating plate in a background flow is considered to study the case of heat dissipation in a vibrating leaf, and (3) a simplified model of a pulsing soft coral where carbon dioxide is taken up and oxygen is released as a byproduct from the moving tentacles. This method is applicable to a broad range of problems in the life sciences, including chemical sensing by antennae, heat dissipation in plants and other structures, the advection-diffusion of morphogens during development, filter-feeding by marine organisms, and the release of waste products from organisms in flows.« less
  4. A coupled phase-field and hydrodynamic model is introduced to describe a two-phase, weakly compressible smectic (layered phase) in contact with an isotropic fluid of different density. A non-conserved smectic order parameter is coupled to a conserved mass density in order to accommodate non-solenoidal flows near the smectic–isotropic boundary arising from density contrast between the two phases. The model aims to describe morphological transitions in smectic thin films under heat treatment, in which arrays of focal conic defects evolve into conical pyramids and concentric rings through curvature dependent evaporation of smectic layers. The model leads to an extended thermodynamic relation atmore »a curved surface that includes its Gaussian curvature, non-classical stresses at the boundary and flows arising from density gradients. The temporal evolution given by the model conserves the overall mass of the liquid crystal while still allowing for the modulated smectic structure to grow or shrink. A numerical solution of the governing equations reveals that pyramidal domains are sculpted at the center of focal conics upon a temperature increase, which display tangential flows at their surface. Other cases investigated include the possible coalescence of two cylindrical stacks of smectic layers, formation of droplets, and the interactions between focal conic domains through flow.« less
  5. Abstract

    Shock waves from underwater and air explosions are significant threats to surface and underwater vehicles and structures. Recent studies on the mechanical and thermal properties of various phase-separated elastomers indicate the possibility of applying these materials as a coating to mitigate shock-induced structural failures. To demonstrate this approach and investigate its efficacy, this paper presents a fluid-structure coupled computational model capable of predicting the dynamic response of air-backed bilayer (i.e. elastomer coating – metal substrate) structures submerged in water to hydrostatic and underwater explosion loads. The model couples a three-dimensional multiphase finite volume computational fluid dynamics model with amore »nonlinear finite element computational solid dynamics model using the FIVER (FInite Volume method with Exact multi-material Riemann solvers) method. The kinematic boundary condition at the fluid-structure interface is enforced using an embedded boundary method that is capable of handling large structural deformation and topological changes. The dynamic interface condition is enforced by formulating and solving local, one-dimensional fluid-solid Riemann problems, which is well-suited for transferring shock and impulsive loads. The capability of this computational model is demonstrated through a numerical investigation of hydrostatic and shock-induced collapse of aluminum tubes with polyurea coating on its inner surface. The thickness of the structure is resolved explicitly by the finite element mesh. The nonlinear material behavior of polyurea is accounted for using a hyper-viscoelastic constitutive model featuring a modified Mooney-Rivlin equation and a stress relaxation function in the form of prony series. Three numerical experiments are conducted to simulate and compare the collapse of the structure in different loading conditions, including a constant pressure, a fluid environment initially in hydrostatic equilibrium, and a two-phase fluid flow created by a near-field underwater explosion.

    « less