skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Self-healing Capacity of Strain-Hardening Fiber Reinforced Geopolymer Composites
This study reports on the self-healing capability of a strain-hardening fiber reinforced geopolymer composite, named Engineered Geopolymer Composite (EGC). EGC specimens were first uniaxially loaded to a tensile strain of 1%. The cracked specimens were then subjected to three different conditioning regimes: air curing, water curing, and no curing (i.e. reloading right after the preloading). Stiffness reduction was measured for each series by comparing the initial stiffness of intact specimens and the residual stiffness of the cracked specimens. In the water-cured specimens, white precipitates were observed in microcracks formed by preloading. Experimental results of the series showed significant stiffness recovery for low stress levels in the range of 0.5 – 1.0 MPa. Self-healing products observed by using a scanning electron microscope were mostly angular, stone-like substance. An analysis of energy dispersive spectroscopy showed that the healing products were relatively rich in silicon (Si) and aluminium (Al) and had lower concentration of calcium (Ca), compared to the geopolymer matrix phase. This implies that main product of EGC self-healing is unlikely to be either calcite (CaCO3) or salt deposits such as Na2CO3, but rather a formation of some aluminosilicate compounds. This study provides a baseline for further investigations into the development of geopolymer composites with robust self-healing.  more » « less
Award ID(s):
1634694
PAR ID:
10148595
Author(s) / Creator(s):
Date Published:
Journal Name:
fib Symposium on Concrete Structures for Resilient Societies
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper aims to clarify the influence of different types of fly ash on the mechanical properties and self-healing behavior of Engineered Cementitious Composite (ECC). Five types of fly ash with different chemical and physical properties were used in ECC mixtures. The fly ash to cement ratio was fixed at 3.0. The compressive and uniaxial tensile tests were conducted to evaluate the influence of fly ash type on mechanical properties. The permeability test was used to assess self-healing behavior of ECCs with different types of fly ash. The microtopography and chemical characteristics of the self-healing products in the crack were observed and examined by scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDS). The fly ash with relatively higher calcium content and smaller particle size was found conducive to a higher compressive strength. The lower combined Al2O3 and CaO content of this fly ash, however, was found to enhance the tensile strain capacity. Furthermore, high calcium fly ash accelerates the self-healing process of ECC for the same pre-damaged level. The self-healing product was a mixed CaCO3/C-S-H system with the CaCO3 as the main ingredient. 
    more » « less
  2. Laminated multifunctional composites are highly desired in modern lightweight engineering structures. The purpose of this study is to develop a composite laminate with impact tolerance, delamination healing, strain sensing, Joule heating, deicing, and room temperature shape restoration functionalities. In this study, a novel self-healable and recyclable shape memory vitrimer was used as the matrix, unidirectional glass fabric was used as reinforcement, and tension programmed shape memory alloy (SMA) wires were used as z-pins. To provide multifunctionality, the programmed SMA wires were further twisted and formed into sinusoidal shape. Copper wire strands were hooked to the sinusoidal SMA z-pins to make them a closed circuit. Low velocity impact, compression after impact, damage self-healing, deicing, and room temperature shape restoration tests were conducted. The tests result show that the desired multifunctionality of the laminated composite was achieved. The hybrid laminate provides a promising design for lightweight load-carrying engineering structures. 
    more » « less
  3. Abstract A geopolymer was produced from coal ash generated from an integrated gasification combined cycle (IGCC) plant and its water resistance was evaluated. For this purpose, the geopolymer specimens were immersed in water for 30 days to measure changes in microstructure and alkalinity of the immersion liquid. Particularly, the experiment was carried out with foaming status of the geopolymers and parameters of room temperature aging condition, and immersion time. The foamed geopolymer containing 0.1 wt% Si-sludge had pores with a diameter of 1 to 3 mm and exhibited excellent foamability. Also, the calcium-silicate-hydrate crystal phase appeared in the foamed geopolymer. In the geopolymer immersion experiment, the pH of the immersion liquid increased with time, because the un-reacted alkali activator remained was dissolved in the immersion liquid. From the pH change of the immersion liquid, it was found that geopolymer reaction in the foamed specimen was completed faster than the non-foamed specimen. Through this study, it was possible to successfully produce foamed and non-foamed geopolymers recycled from IGCC coal ash. Also the necessary data for the safe application of IGCC coal ash-based geopolymers to areas where water resistance is needed were established; for example, the process conditions for room temperature aging time, effect of foaming status, immersion time and so on. 
    more » « less
  4. Dynamic shear modulus plays an important role in the seismic assessment of geotechnical systems. Changes in the degree of water saturation influence dynamic soil properties because of the presence of matric suction. This paper describes the modification of a suction-controlled cyclic triaxial apparatus to investigate the strain-dependent shear modulus of unsaturated soils. Several strain- and stress-controlled cyclic triaxial tests were performed on a clean sand with various degrees of saturation. Suction in unsaturated sands increased the shear modulus in comparison with the ones in dry and saturated conditions for different shear strain levels, with a peak modulus in higher suction levels. Also, shear modulus decreased with an increase in the shear strain for specimens with similar matric suction. The normalized shear moduli of the unsaturated sand specimens followed a similar trend to the ones predicted by the available empirical shear modulus reduction functions but showed lower values. The modulus reduction ratios of unsaturated sands shifted up as a result of higher effective stress and suction-induced stiffness. These trends were consistent for both strain- and stress-controlled tests. 
    more » « less
  5. Carbon nanotubes (CNTs), as they possess outstanding mechanical properties and low density, are considered as one of the most promising reinforcements in composite structures. Due to their capability of transferring loads, CNTs in long continuous forms such as yarns and tapes can withstand 20 times as much load as steel can do at the same weight. In this research, carbon nanotube yarns were wound onto an aluminum plate using a custom-built fixture to fabricate a unidirectional strip. Then, by brushing epoxy resin on the strip and laminating four layers, the unidirectional CNT reinforced epoxy resin composite beam specimens were produced. The mechanical properties of the unidirectional CNT-reinforced composite (CNTRC) were determined using standard tensile tests. This study presents a method for manufacturing CNTRC out of CNT yarns, determining the CNTRC’s Young’s modulus as well as the tensile strength, and obtaining its strain field via digital image correlation (DIC) method. It is observed that the pressure due to sandwiching of the aluminum plates during the manufacturing process leads to nonuniformity of the specimen in the width along midspan of the longitudinal direction which results in the specimen’s not being perfectly unidirectional. This phenomenon can cause the matrix cracking in tensile test and reduce the ultimate tensile strength up to 78% in comparison with perfectly unidirectional specimens. However, the Young’s modulus of such composites is comparable with those obtained from previously existing research. Also, Results from DIC showed the possible failure prone areas in the specimens, as it presents a up to 64% difference between the highest and lowest strain in the tensile loading direction through the specimens. This study will serve as a foundation for future research involving CNT composites, particularly the use of their high anisotropy to produce auxetic composites with large negative Poisson’s ratios. 
    more » « less