skip to main content


Title: Synthesis of TlBr and Tl 2 AgBr 3 Nanocrystals
Abstract

There are only a few examples of nanocrystal synthesis with thallium (Tl). Here, we report the synthesis of uniform, ligand‐stabilized colloidal nanocrystals of TlBr and Tl2AgBr3nanocrystals with average diameter ranging between 10 and 20 nm. TlBr nanocrystals are made by hot injection of trimethylsilyl bromide (TMSBr) into solutions of oleylamine, oleic acid and octadecene with thallium (III) or thallium (I) acetate. Tl2AgBr3nanocrystals form when silver (I) acetate is included in the reaction. The TlBr nanocrystals have CsCl crystal structure with a direct band gap of 3.1 eV. The Tl2AgBr3nanocrystals have trigonal dolomite crystal structure with an indirect band gap of 3.1 eV. The TlBr nanocrystals made with thallium (III) were sufficiently uniform to assemble into face‐centered cubic (fcc) superlattices.

 
more » « less
Award ID(s):
1822206 1720595 1624659
NSF-PAR ID:
10148916
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
ChemNanoMat
Volume:
6
Issue:
5
ISSN:
2199-692X
Page Range / eLocation ID:
p. 790-796
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Chromium-doped SrTiO 3 nanocrystals of perovskite structure type and 45 nm (±15 nm) edge lengths were obtained by hydrothermal synthesis in water from titanium oxide, strontium hydroxide, and chromium( iii ) nitrate. According to XPS, the majority of the surface chromium (68.3%) is present in the 3+ state and the remainder (32.2%) in the 6+ state. Optical spectroscopy confirms a broad absorption at 2.3–2.9 eV from Cr(3+) dopant states, in addition to the 3.2 eV band edge of the SrTiO 3 host. After modification with Pt nanoparticles, Cr-doped SrTiO 3 nanocrystals catalyze photochemical H 2 evolution from aqueous methanol under visible light illumination (>400 nm) and with an apparent quantum yield of 0.66% at 435 nm. According to surface photovoltage spectroscopy (SPS), Cr-doped SrTiO 3 nanocrystals deposited onto gold substrates are n-type and have an effective band gap of 1.75 eV. SPS and transient illumination experiments at 2.50 eV reveal an anomalous surface photovoltage that increases with prior light exposure to values of up to −6.3 V. This photovoltage is assigned to ferroelectric polarization of the material in the space charge layer at the Au/SrTiO 3 :Cr interface. The polarization is stable for 24 h in vacuum but disappears after 12 h when samples are stored in air. The electric polarizability of SrTiO 3 :Cr is confirmed when films are exposed to static electric fields (1.20 MV m −1 ) in a fixed capacitor configuration. The discovery of a ferroelectric effect in Cr-doped SrTiO 3 could be significant for the development of improved photocatalysts for the conversion of solar energy into fuel. 
    more » « less
  2. Two novel ternary compounds from the pseudobinary CH3NH3X–AgX (X = Br, I) phase diagrams are reported. CH3NH3AgBr2 and CH3NH3Ag2I3 were synthesized via solid state sealed tube reactions and the crystal structures were determined through a combination of single crystal and synchrotron X-ray powder diffraction. Structurally, both compounds consist of one-dimensional ribbons built from silvercentered tetrahedra. The structure of CH3NH3AgBr2 possesses orthorhombic Pnma symmetry and is made up of zig-zag chains where each silver bromide tetrahedron shares two edges with neighboring tetrahedra. The tetrahedral coordination of silver is retained in CH3NH3Ag2I3, which has monoclinic P21/m symmetry, but the change in stoichiometry leads to a greater degree of edge-sharing connectivity within the silver iodide chains. With band gaps of 3.3 eV (CH3NH3Ag2I3) and 4.0 eV (CH3NH3AgBr2) the absorption onsets of the ternary phases are significantly blue shifted from the binary silver halides, AgBr and AgI, due in part to the decrease in electronic dimensionality. The compounds are stable for at least one month under ambient conditions and are thermally stable up to approximately 200 1C. Density functional theory calculations reveal very narrow valence bands and moderately disperse conduction bands with Ag 5s character. Bond valence calculations are used to analyze the hydrogen bonding between methylammonium cations and coordinatively unsaturated halide ions. The crystal chemistry of these compounds helps to explain the dearth of iodide double perovskites in the literature.

     
    more » « less
  3. Abstract

    Above‐band gap optical excitation of non‐centrosymmetric semiconductors can lead to the spatial shift of the center of electron charge in a process known as shift current. Shift current is investigated in single‐crystal SnS2, a layered semiconductor with the band gap of ≈2.3 eV, by THz emission spectroscopy and first principles density functional theory (DFT). It is observed that normal incidence excitation with above gap (400 nm; 3.1 eV) pulses results in THz emission from 2H SnS2() polytype, where such emission is nominally forbidden by symmetry. It is argued that the underlying symmetry breaking arises due to the presence of stacking faults that are known to be ubiquitous in SnS2single crystals and construct a possible structural model of a stacking fault with symmetry properties consistent with the experimental observations. In addition to shift current, it is observed THz emission by optical rectification excited by below band gap (800 nm; 1.55 eV) pulses but it requires excitation fluence more than two orders of magnitude higher to produce same signal amplitude. These results suggest that ultrafast shift current in which can be excited with visible light in blue–green portion of the spectrum makes SnS2a promising source material for THz photonics.

     
    more » « less
  4. Abstract

    Previous band structure calculations predicted Ag3AuSe2to be a semiconductor with a band gap of approximately 1 eV. Here, we report single crystal growth of Ag3AuSe2and its transport and optical properties. Single crystals of Ag3AuSe2were synthesized by slow‐cooling from the melt, and grain sizes were confirmed to be greater than 2 mm using electron backscatter diffraction. Optical and transport measurements reveal that Ag3AuSe2is a highly resistive semiconductor with a band gap and activation energy around 0.3 eV. Our first‐principles calculations show that the experimentally determined band gap lies between the predicted band gaps from GGA and hybrid functionals. We predict band inversion to be possible by applying tensile strain. The sensitivity of the gap to Ag/Au ordering, chemical substitution, and heat treatment merit further investigation.

     
    more » « less
  5. Abstract

    Copper(I) halides are emerging as attractive alternatives to lead halide perovskites for optical and electronic applications. However, blue‐emitting all‐inorganic copper(I) halides suffer from poor stability and lack of tunability of their photoluminescence (PL) properties. Here, the preparation of silver(I) halides A2AgX3(A = Rb, Cs; X = Cl, Br, I) through solid‐state synthesis is reported. In contrast to the Cu(I) analogs, A2AgX3are broad‐band emitters sensitive to A and X site substitutions. First‐principle calculations show that defect‐bound excitons are responsible for the observed main PL peaks in Rb2AgX3and that self‐trapped excitons (STEs) contribute to a minor PL peak in Rb2AgBr3. This is in sharp contrast to Rb2CuX3, in which the PL is dominated by the emission by STEs. Moreover, the replacement of Cu(I) with Ag(I) in A2AgX3significantly improves photostability and stability in the air under ambient conditions, which enables their consideration for practical applications. Thus, luminescent inks based on A2AgX3are prepared and successfully used in anti‐counterfeiting applications. The excellent light emission properties, significantly improved stability, simple preparation method, and tunable light emission properties demonstrated by A2AgX3suggest that silver(I) halides may be attractive alternatives to toxic lead halide perovskites and unstable copper(I) halides for optical applications.

     
    more » « less