skip to main content


Title: Residually finite rationally p groups
In this paper, we develop the theory of residually finite rationally [Formula: see text] (RFR[Formula: see text]) groups, where [Formula: see text] is a prime. We first prove a series of results about the structure of finitely generated RFR[Formula: see text] groups (either for a single prime [Formula: see text], or for infinitely many primes), including torsion-freeness, a Tits alternative, and a restriction on the BNS invariant. Furthermore, we show that many groups which occur naturally in group theory, algebraic geometry, and in 3-manifold topology enjoy this residual property. We then prove a combination theorem for RFR[Formula: see text] groups, which we use to study the boundary manifolds of algebraic curves [Formula: see text] and in [Formula: see text]. We show that boundary manifolds of a large class of curves in [Formula: see text] (which includes all line arrangements) have RFR[Formula: see text] fundamental groups, whereas boundary manifolds of curves in [Formula: see text] may fail to do so.  more » « less
Award ID(s):
1711488
NSF-PAR ID:
10182925
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Communications in Contemporary Mathematics
Volume:
22
Issue:
03
ISSN:
0219-1997
Page Range / eLocation ID:
1950016
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Despite the vast literature on network dynamics, we still lack basic insights into dynamics on higher-order structures (e.g., edges, triangles, and more generally, [Formula: see text]-dimensional “simplices”) and how they are influenced through higher-order interactions. A prime example lies in neuroscience where groups of neurons (not individual ones) may provide building blocks for neurocomputation. Here, we study consensus dynamics on edges in simplicial complexes using a type of Laplacian matrix called a Hodge Laplacian, which we generalize to allow higher- and lower-order interactions to have different strengths. Using techniques from algebraic topology, we study how collective dynamics converge to a low-dimensional subspace that corresponds to the homology space of the simplicial complex. We use the Hodge decomposition to show that higher- and lower-order interactions can be optimally balanced to maximally accelerate convergence and that this optimum coincides with a balancing of dynamics on the curl and gradient subspaces. We additionally explore the effects of network topology, finding that consensus over edges is accelerated when two-simplices are well dispersed, as opposed to clustered together.

     
    more » « less
  2. Motivated by results about “untangling” closed curves on hyperbolic surfaces, Gupta and Kapovich introduced the primitivity and simplicity index functions for finitely generated free groups, [Formula: see text] and [Formula: see text], where [Formula: see text], and obtained some upper and lower bounds for these functions. In this paper, we study the behavior of the sequence [Formula: see text] as [Formula: see text]. Answering a question from [17], we prove that this sequence is unbounded and that for [Formula: see text], we have [Formula: see text]. By contrast, we show that for all [Formula: see text], one has [Formula: see text]. In addition to topological and group-theoretic arguments, number-theoretic considerations, particularly the use of asymptotic properties of the second Chebyshev function, turn out to play a key role in the proofs. 
    more » « less
  3. We investigate the phase diagram of the complex cubic unitary ensemble of random matrices with the potential [Formula: see text], where t is a complex parameter. As proven in our previous paper [Bleher et al., J. Stat. Phys. 166, 784–827 (2017)], the whole phase space of the model, [Formula: see text], is partitioned into two phase regions, [Formula: see text] and [Formula: see text], such that in [Formula: see text] the equilibrium measure is supported by one Jordan arc (cut) and in [Formula: see text] by two cuts. The regions [Formula: see text] and [Formula: see text] are separated by critical curves, which can be calculated in terms of critical trajectories of an auxiliary quadratic differential. In Bleher et al. [J. Stat. Phys. 166, 784–827 (2017)], the one-cut phase region was investigated in detail. In the present paper, we investigate the two-cut region. We prove that in the two-cut region, the endpoints of the cuts are analytic functions of the real and imaginary parts of the parameter t, but not of the parameter t itself (so that the Cauchy–Riemann equations are violated for the endpoints). We also obtain the semiclassical asymptotics of the orthogonal polynomials associated with the ensemble of random matrices and their recurrence coefficients. The proofs are based on the Riemann–Hilbert approach to semiclassical asymptotics of the orthogonal polynomials and the theory of S-curves and quadratic differentials.

     
    more » « less
  4. Let [Formula: see text] be a Baumslag–Solitar group and let [Formula: see text] be a complex reductive algebraic group with maximal compact subgroup [Formula: see text]. We show that, when [Formula: see text] and [Formula: see text] are relatively prime with distinct absolute values, there is a strong deformation retraction of [Formula: see text] onto [Formula: see text]. 
    more » « less
  5. null (Ed.)
    The Thurston norm of a three-manifold measures the complexity of surfaces representing two-dimensional homology classes. We study the possible unit balls of Thurston norms of three-manifolds [Formula: see text] with [Formula: see text], and whose fundamental groups admit presentations with two generators and one relator. We show that even among this special class, there are three-manifolds such that the unit ball of the Thurston norm has arbitrarily many faces. 
    more » « less