skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Analysis of an approximation to a fractional extension problem
The purpose of this article is to study an approximation to an abstract Bessel-type problem, which is a generalization of the extension problem associated with fractional powers of the Laplace operator. Motivated by the success of such approaches in the analysis of time-stepping methods for abstract Cauchy problems, we adopt a similar framework herein. The proposed method differs from many standard techniques, as we approximate the true solution to the abstract problem, rather than solve an associated discrete problem. The numerical method is shown to be consistent, stable, and convergent in an appropriate Banach space. These results are built upon well understood results from semigroup theory. Numerical experiments are provided to demonstrate the theoretical results.  more » « less
Award ID(s):
1903450
PAR ID:
10149920
Author(s) / Creator(s):
Date Published:
Journal Name:
BIT Numerical Mathematics
ISSN:
0006-3835
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We consider the problem of computing a class of soliton gas primitive potentials for the Korteweg-de Vries equation that arise from the accumulation of solitons on an infinite interval in the physical domain, extending to $$-\infty$$. This accumulation results in an associated Riemann-Hilbert Problem (RHP) on a number of disjoint intervals. In the case where the jump matrices have specific square-root behaviour, we describe an efficient and accurate numerical method to solve this RHP and extract the potential. The keys to the method are, first, the deformation of the RHP, making numerical use of the so-called $$g$$-function, and, second, the incorporation of endpoint singularities into the chosen basis to discretize and solve the associated singular integral equation. 
    more » « less
  2. null (Ed.)
    Abstract We design and analyze a $$C^0$$ C 0 interior penalty method for the approximation of classical solutions of the Dirichlet boundary value problem of the Monge–Ampère equation on convex polygonal domains. The method is based on an enhanced cubic Lagrange finite element that enables the enforcement of the convexity of the approximate solutions. Numerical results that corroborate the a priori and a posteriori error estimates are presented. It is also observed from numerical experiments that this method can capture certain weak solutions. 
    more » « less
  3. Abstract We consider the existence and spectral stability of multi-breather structures in the discrete Klein–Gordon equation, both for soft and hard symmetric potentials. To obtain analytical results, we project the system onto a finite-dimensional Hilbert space consisting of the first M Fourier modes, for arbitrary M . On this approximate system, we then take a spatial dynamics approach and use Lin’s method to construct multi-breathers from a sequence of well-separated copies of the primary, single-site breather. We then locate the eigenmodes in the Floquet spectrum associated with the interaction between the individual breathers of such multi-breather states by reducing the spectral problem to a matrix equation. Expressions for these eigenmodes for the approximate, finite-dimensional system are obtained in terms of the primary breather and its kernel eigenfunctions, and these are found to be in very good agreement with the numerical Floquet spectrum results. This is supplemented with results from numerical timestepping experiments, which are interpreted using the spectral computations. 
    more » « less
  4. Abstract We consider the existence and spectral stability of static multi-kink structures in the discrete sine-Gordon equation, as a representative example of the family of discrete Klein–Gordon models. The multi-kinks are constructed using Lin’s method from an alternating sequence of well-separated kink and antikink solutions. We then locate the point spectrum associated with these multi-kink solutions by reducing the spectral problem to a matrix equation. For an m -structure multi-kink, there will be m eigenvalues in the point spectrum near each eigenvalue of the primary kink, and, as long as the spectrum of the primary kink is imaginary, the spectrum of the multi-kink will be as well. We obtain analytic expressions for the eigenvalues of a multi-kink in terms of the eigenvalues and corresponding eigenfunctions of the primary kink, and these are in very good agreement with numerical results. We also perform numerical time-stepping experiments on perturbations of multi-kinks, and the outcomes of these simulations are interpreted using the spectral results. 
    more » « less
  5. Abstract In this paper, we consider the inverse scattering problem associated with an anisotropic medium with a conductive boundary. We will assume that the corresponding far–field pattern is known/measured and we consider two inverse problems. First, we show that the far–field data uniquely determines the boundary coefficient. Next, since it is known that anisotropic coefficients are not uniquely determined by this data we will develop a qualitative method to recover the scatterer. To this end, we study the so–called monotonicity method applied to this inverse shape problem. This method has recently been applied to some inverse scattering problems but this is the first time it has been applied to an anisotropic scatterer. This method allows one to recover the scatterer by considering the eigenvalues of an operator associated with the far–field operator. We present some simple numerical reconstructions to illustrate our theory in two dimensions. For our reconstructions, we need to compute the adjoint of the Herglotz wave function as an operator mapping intoH1of a small ball. 
    more » « less