skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Extended-range statistical ENSO prediction through operator-theoretic techniques for nonlinear dynamics
Abstract Forecasting the El Niño-Southern Oscillation (ENSO) has been a subject of vigorous research due to the important role of the phenomenon in climate dynamics and its worldwide socioeconomic impacts. Over the past decades, numerous models for ENSO prediction have been developed, among which statistical models approximating ENSO evolution by linear dynamics have received significant attention owing to their simplicity and comparable forecast skill to first-principles models at short lead times. Yet, due to highly nonlinear and chaotic dynamics (particularly during ENSO initiation), such models have limited skill for longer-term forecasts beyond half a year. To resolve this limitation, here we employ a new nonparametric statistical approach based on analog forecasting, called kernel analog forecasting (KAF), which avoids assumptions on the underlying dynamics through the use of nonlinear kernel methods for machine learning and dimension reduction of high-dimensional datasets. Through a rigorous connection with Koopman operator theory for dynamical systems, KAF yields statistically optimal predictions of future ENSO states as conditional expectations, given noisy and potentially incomplete data at forecast initialization. Here, using industrial-era Indo-Pacific sea surface temperature (SST) as training data, the method is shown to successfully predict the Niño 3.4 index in a 1998–2017 verification period out to a 10-month lead, which corresponds to an increase of 3–8 months (depending on the decade) over a benchmark linear inverse model (LIM), while significantly improving upon the ENSO predictability “spring barrier”. In particular, KAF successfully predicts the historic 2015/16 El Niño at initialization times as early as June 2015, which is comparable to the skill of current dynamical models. An analysis of a 1300-yr control integration of a comprehensive climate model (CCSM4) further demonstrates that the enhanced predictability afforded by KAF holds over potentially much longer leads, extending to 24 months versus 18 months in the benchmark LIM. Probabilistic forecasts for the occurrence of El Niño/La Niña events are also performed and assessed via information-theoretic metrics, showing an improvement of skill over LIM approaches, thus opening an avenue for environmental risk assessment relevant in a variety of contexts.  more » « less
Award ID(s):
1854383 1842538
PAR ID:
10149943
Author(s) / Creator(s):
; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
10
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The El Niño‐Southern Oscillation (ENSO) phenomenon—the dominant source of climate variability on seasonal to multi‐year timescales—is predictable a few seasons in advance. Forecast skill at longer multi‐year timescales has been found in a few models and forecast systems, but the robustness of this predictability across models has not been firmly established owing to the cost of running dynamical model predictions at longer lead times. In this study, we use a massive collection of multi‐model hindcasts performed using model analogs to show that multi‐year ENSO predictability is robust across models and arises predominantly due to skillful prediction of multi‐year La Nina events following strong El Niño events. 
    more » « less
  2. The El Niño–Southern Oscillation (ENSO) provides most of the global seasonal climate forecast skill, yet, quantifying the sources of skilful predictions is a long-standing challenge. Different sources of predictability affect ENSO evolution, leading to distinct global effects. Artificial intelligence forecasts offer promising advancements but linking their skill to specific physical processes is not yet possible, limiting our understanding of the dynamics underpinning the advancements. Here we show that an extended nonlinear recharge oscillator (XRO) model shows skilful ENSO forecasts at lead times up to 16–18 months, better than global climate models and comparable to the most skilful artificial intelligence forecasts. The XRO parsimoniously incorporates the core ENSO dynamics and ENSO’s seasonally modulated interactions with other modes of variability in the global oceans. The intrinsic enhancement of ENSO’s long-range forecast skill is traceable to the initial conditions of other climate modes by means of their memory and interactions with ENSO and is quantifiable in terms of these modes’ contributions to ENSO amplitude. Reforecasts using the XRO trained on climate model output show that reduced biases in both model ENSO dynamics and in climate mode interactions can lead to more skilful ENSO forecasts. The XRO framework’s holistic treatment of ENSO’s global multi-timescale interactions highlights promising targets for improving ENSO simulations and forecasts. 
    more » « less
  3. Abstract This study assesses the predictive skill of eight North American Multimodel Ensemble (NMME) models in predicting the Indian Ocean dipole (IOD). We find that the forecasted ensemble-mean IOD–El Niño–Southern Oscillation (ENSO) relationship deteriorates away from the observed relationship with increasing lead time, which might be one reason that limits the IOD predictive skill in coupled models. We are able to improve the IOD predictive skill using a recently developed stochastic dynamical model (SDM) forced by forecasted ENSO conditions. The results are consistent with the previous result that operational IOD predictability beyond persistence at lead times beyond one season is mostly controlled by ENSO predictability and the signal-to-noise ratio of the Indo-Pacific climate system. The multimodel ensemble (MME) investigated here is found to be of superior skill compared to each individual model at most lead times. Importantly, the skill of the SDM IOD predictions forced with forecasted ENSO conditions were either similar or better than those of the MME IOD forecasts. Moreover, the SDM forced with observed ENSO conditions exhibits significantly higher IOD prediction skill than the MME at longer lead times, suggesting the large potential skill increase that could be achieved by improving operational ENSO forecasts. We find that both cold and warm biases of the predicted Niño-3.4 index may cause false alarms of negative and positive IOD events, respectively, in NMME models. Many false alarms for IOD forecasts at lead times longer than one season in the original forecasts disappear or are significantly reduced in the SDM forced by forecasted ENSO conditions. 
    more » « less
  4. Abstract Despite recent progress in seasonal forecast systems, the predictive skill for the Indian Ocean Dipole (IOD) remains typically limited to a lead time of one season or less in both dynamical and empirical models. Here we develop a simple stochastic‐dynamical model (SDM) to predict the IOD using seasonally modulated El Niño–Southern Oscillation (ENSO) forcing together with a seasonally modulated Indian Ocean coupled ocean‐atmosphere feedback. The SDM, with either observed or forecasted ENSO forcing, exhibits generally higher skill and longer lead times for predicting IOD events than the operational Climate Forecast System version 2 and the Scale Interaction Experiment–Frontier system. The improvements mainly originate from better prediction of ENSO‐dependent IOD events and from reducing false alarms. These results affirm our hypothesis that operational IOD predictability beyond persistence is largely controlled by ENSO predictability and the signal‐to‐noise ratio of the system. Therefore, potential future ENSO improvements in models should translate to more skillful IOD predictions. 
    more » « less
  5. Abstract This study illustrates the considerable improvement in accuracy achievable for long‐lead forecasts (18 months) of the Ocean Niño Index (ONI) through the utilization of a long short‐term memory (LSTM) machine learning algorithm. The research assesses the predictive potential of eight predictors from both tropical and extratropical regions constructed based on sea surface temperature, outgoing longwave radiation, sea surface height and zonal and meridional wind anomalies. In comparison to linear regression model forecasts, the LSTM model outperforms them for both the tropical and extratropical predictor sets. Among all the predictors, the western North Pacific (WNP) index demonstrates the highest prediction skill in ONI forecasts, followed by the North Tropical Atlantic (NTA) index and then the sea surface height index. While other predictors help the LSTM model to forecast either the phase variation of the amplitude variation of the observed ONI, the extratropical WNP predictor enables the LSTM model to forecast both variations. This superiority can be attributed to the involvement of SST anomalies in the WNP region in both tropical and extratropical El Niño–Southern Oscillation (ENSO) dynamics, allowing for the utilization of predictive potential from both components of ENSO dynamics. The study also concludes that the extratropical ENSO dynamics provide a robust source of predictability for long‐lead ENSO forecasts, which can be effectively harnessed using the LSTM model. 
    more » « less