skip to main content


Title: Monthly Modulations of ENSO Teleconnections: Implications for Potential Predictability in North America
Abstract Using a high-resolution atmospheric general circulation model simulation of unprecedented ensemble size, we examine potential predictability of monthly anomalies under El Niño Southern Oscillation (ENSO) forcing and back-ground internal variability. This study reveals the pronounced month-to-month evolution of both the ENSO forcing signal and internal variability. Internal variance in upper-level geopotential height decreases (∼ 10%) over the North Pacific during El Niño as the westerly jet extends eastward, allowing forced signals to account for a greater fraction of the total variability, and leading to increased potential predictability. We identify February and March of El Niño years as the most predictable months using a signal-to-noise analysis. In contrast, December, a month typically included in teleconnection studies, shows little-to-no potential predictability. We show that the seasonal evolution of SST forcing and variability leads to significant signal-to-noise relationships that can be directly linked to both upper-level and surface variable predictability for a given month. The stark changes in forced response, internal variability, and thus signal-to-noise across an ENSO season indicate that subseasonal fields should be used to diagnose potential predictability over North America associated with ENSO teleconnections. Using surface air temperature and precipitation as examples, this study provides motivation to pursue ‘windows of forecast opportunity’, in which statistical skill can be developed, tested, and leveraged to determine times and regions in which this skill may be elevated.  more » « less
Award ID(s):
1637450 2105654
NSF-PAR ID:
10300566
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Journal of Climate
ISSN:
0894-8755
Page Range / eLocation ID:
1 to 71
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This study assesses the predictive skill of eight North American Multimodel Ensemble (NMME) models in predicting the Indian Ocean dipole (IOD). We find that the forecasted ensemble-mean IOD–El Niño–Southern Oscillation (ENSO) relationship deteriorates away from the observed relationship with increasing lead time, which might be one reason that limits the IOD predictive skill in coupled models. We are able to improve the IOD predictive skill using a recently developed stochastic dynamical model (SDM) forced by forecasted ENSO conditions. The results are consistent with the previous result that operational IOD predictability beyond persistence at lead times beyond one season is mostly controlled by ENSO predictability and the signal-to-noise ratio of the Indo-Pacific climate system. The multimodel ensemble (MME) investigated here is found to be of superior skill compared to each individual model at most lead times. Importantly, the skill of the SDM IOD predictions forced with forecasted ENSO conditions were either similar or better than those of the MME IOD forecasts. Moreover, the SDM forced with observed ENSO conditions exhibits significantly higher IOD prediction skill than the MME at longer lead times, suggesting the large potential skill increase that could be achieved by improving operational ENSO forecasts. We find that both cold and warm biases of the predicted Niño-3.4 index may cause false alarms of negative and positive IOD events, respectively, in NMME models. Many false alarms for IOD forecasts at lead times longer than one season in the original forecasts disappear or are significantly reduced in the SDM forced by forecasted ENSO conditions. 
    more » « less
  2. El Niño–Southern Oscillation (ENSO) peaks in boreal winter but its impact on Indo-western Pacific climate persists for another two seasons. Key ocean–atmosphere interaction processes for the ENSO effect are investigated using the Pacific Ocean–Global Atmosphere (POGA) experiment with a coupled general circulation model, where tropical Pacific sea surface temperature (SST) anomalies are restored to follow observations while the atmosphere and oceans are fully coupled elsewhere. The POGA shows skills in simulating the ENSO-forced warming of the tropical Indian Ocean and an anomalous anticyclonic circulation pattern over the northwestern tropical Pacific in the post–El Niño spring and summer. The 10-member POGA ensemble allows decomposing Indo-western Pacific variability into the ENSO forced and ENSO-unrelated (internal) components. Internal variability is comparable to the ENSO forcing in magnitude and independent of ENSO amplitude and phase. Random internal variability causes apparent decadal modulations of ENSO correlations over the Indo-western Pacific, which are high during epochs of high ENSO variance. This is broadly consistent with instrumental observations over the past 130 years as documented in recent studies. Internal variability features a sea level pressure pattern that extends into the north Indian Ocean and is associated with coherent SST anomalies from the Arabian Sea to the western Pacific, suggestive of ocean–atmosphere coupling.

     
    more » « less
  3. Abstract

    Climate variability has distinct spatial patterns with the strongest signal of sea surface temperature (SST) variance residing in the tropical Pacific. This interannual climate phenomenon, the El Niño-Southern Oscillation (ENSO), impacts weather patterns across the globe via atmospheric teleconnections. Pronounced SST variability, albeit of smaller amplitude, also exists in the other tropical basins as well as in the extratropical regions. To improve our physical understanding of internal climate variability across the global oceans, we here make the case for a conceptual model hierarchy that captures the essence of observed SST variability from subseasonal to decadal timescales. The building blocks consist of the classic stochastic climate model formulated by Klaus Hasselmann, a deterministic low-order model for ENSO variability, and the effect of the seasonal cycle on both of these models. This model hierarchy allows us to trace the impacts of seasonal processes on the statistics of observed and simulated climate variability. One of the important outcomes of ENSO’s interaction with the seasonal cycle is the generation of a frequency cascade leading to deterministic climate variability on a wide range of timescales, including the near-annual ENSO Combination Mode. Using the aforementioned building blocks, we arrive at a succinct conceptual model that delineates ENSO’s ubiquitous climate impacts and allows us to revisit ENSO’s observed statistical relationships with other coherent spatio-temporal patterns of climate variability—so called empirical modes of variability. We demonstrate the importance of correctly accounting for different seasonal phasing in the linear growth/damping rates of different climate phenomena, as well as the seasonal phasing of ENSO teleconnections and of atmospheric noise forcings. We discuss how previously some of ENSO’s relationships with other modes of variability have been misinterpreted due to non-intuitive seasonal cycle effects on both power spectra and lead/lag correlations. Furthermore, it is evident that ENSO’s impacts on climate variability outside the tropical Pacific are oftentimes larger than previously recognized and that accurately accounting for them has important implications. For instance, it has been shown that improved seasonal prediction skill can be achieved in the Indian Ocean by fully accounting for ENSO’s seasonally modulated and temporally integrated remote impacts. These results move us to refocus our attention to the tropical Pacific for understanding global patterns of climate variability and their predictability.

     
    more » « less
  4. Abstract

    The influence of El Niño–Southern Oscillation (ENSO) in the Asian monsoon region can persist through the post-ENSO summer, after the sea surface temperature (SST) anomalies in the tropical Pacific have dissipated. The long persistence of coherent post-ENSO anomalies is caused by a positive feedback due to interbasin ocean–atmospheric coupling, known as the Indo-western Pacific Ocean capacitor (IPOC) effect, although the feedback mechanism itself does not necessarily rely on the antecedence of ENSO events, suggesting the potential for substantial internal variability independent of ENSO. To investigate the respective role of ENSO forcing and non-ENSO internal variability, we conduct ensemble “forecast” experiments with a full-physics, globally coupled atmosphere–ocean model initialized from a multidecadal tropical Pacific pacemaker simulation. The leading mode of internal variability as represented by the forecast-ensemble spread resembles the post-ENSO IPOC, despite the absence of antecedent ENSO forcing by design. The persistent atmospheric and oceanic anomalies in the leading mode highlight the positive feedback mechanism in the internal variability. The large sample size afforded by the ensemble spread allows us to identify robust non-ENSO precursors of summer IPOC variability, including a cool SST patch over the tropical northwestern Pacific, a warming patch in the tropical North Atlantic, and downwelling oceanic Rossby waves in the tropical Indian Ocean south of the equator. The pathways by which the precursors develop into the summer IPOC mode and the implications for improved predictability are discussed.

     
    more » « less
  5. Abstract

    Identifying the origins of wintertime climate variations in the Northern Hemisphere requires careful attribution of the role of El Niño–Southern Oscillation (ENSO). For example, Aleutian low variability arises from internal atmospheric dynamics and is remotely forced mainly via ENSO. How ENSO modifies the local sea surface temperature (SST) and North American precipitation responses to Aleutian low variability remains unclear, as teasing out the ENSO signal is difficult. This study utilizes carefully designed coupled model experiments to address this issue. In the absence of ENSO, a deeper Aleutian low drives a positive Pacific decadal oscillation (PDO)-like SST response. However, unlike the observed PDO pattern, a coherent zonal band of turbulent heat flux–driven warm SST anomalies develops throughout the subtropical North Pacific. Furthermore, non-ENSO Aleutian low variability is associated with a large-scale atmospheric circulation pattern confined over the North Pacific and North America and dry precipitation anomalies across the southeastern United States. When ENSO is included in the forcing of Aleutian low variability in the experiments, the ENSO teleconnection modulates the turbulent heat fluxes and damps the subtropical SST anomalies induced by non-ENSO Aleutian low variability. Inclusion of ENSO forcing results in wet precipitation anomalies across the southeastern United States, unlike when the Aleutian low is driven by non-ENSO sources. Hence, we find that the ENSO teleconnection acts to destructively interfere with the subtropical North Pacific SST and southeastern United States precipitation signals associated with non-ENSO Aleutian low variability.

     
    more » « less