Abstract This study assesses the predictive skill of eight North American Multimodel Ensemble (NMME) models in predicting the Indian Ocean dipole (IOD). We find that the forecasted ensemble-mean IOD–El Niño–Southern Oscillation (ENSO) relationship deteriorates away from the observed relationship with increasing lead time, which might be one reason that limits the IOD predictive skill in coupled models. We are able to improve the IOD predictive skill using a recently developed stochastic dynamical model (SDM) forced by forecasted ENSO conditions. The results are consistent with the previous result that operational IOD predictability beyond persistence at lead times beyond one season is mostly controlled by ENSO predictability and the signal-to-noise ratio of the Indo-Pacific climate system. The multimodel ensemble (MME) investigated here is found to be of superior skill compared to each individual model at most lead times. Importantly, the skill of the SDM IOD predictions forced with forecasted ENSO conditions were either similar or better than those of the MME IOD forecasts. Moreover, the SDM forced with observed ENSO conditions exhibits significantly higher IOD prediction skill than the MME at longer lead times, suggesting the large potential skill increase that could be achieved by improving operational ENSO forecasts. We find that both cold and warm biases of the predicted Niño-3.4 index may cause false alarms of negative and positive IOD events, respectively, in NMME models. Many false alarms for IOD forecasts at lead times longer than one season in the original forecasts disappear or are significantly reduced in the SDM forced by forecasted ENSO conditions.
more »
« less
Monthly Modulations of ENSO Teleconnections: Implications for Potential Predictability in North America
Abstract Using a high-resolution atmospheric general circulation model simulation of unprecedented ensemble size, we examine potential predictability of monthly anomalies under El Niño Southern Oscillation (ENSO) forcing and back-ground internal variability. This study reveals the pronounced month-to-month evolution of both the ENSO forcing signal and internal variability. Internal variance in upper-level geopotential height decreases (∼ 10%) over the North Pacific during El Niño as the westerly jet extends eastward, allowing forced signals to account for a greater fraction of the total variability, and leading to increased potential predictability. We identify February and March of El Niño years as the most predictable months using a signal-to-noise analysis. In contrast, December, a month typically included in teleconnection studies, shows little-to-no potential predictability. We show that the seasonal evolution of SST forcing and variability leads to significant signal-to-noise relationships that can be directly linked to both upper-level and surface variable predictability for a given month. The stark changes in forced response, internal variability, and thus signal-to-noise across an ENSO season indicate that subseasonal fields should be used to diagnose potential predictability over North America associated with ENSO teleconnections. Using surface air temperature and precipitation as examples, this study provides motivation to pursue ‘windows of forecast opportunity’, in which statistical skill can be developed, tested, and leveraged to determine times and regions in which this skill may be elevated.
more »
« less
- PAR ID:
- 10300566
- Date Published:
- Journal Name:
- Journal of Climate
- ISSN:
- 0894-8755
- Page Range / eLocation ID:
- 1 to 71
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Improved Predictability of the Indian Ocean Dipole Using Seasonally Modulated ENSO Forcing ForecastsAbstract Despite recent progress in seasonal forecast systems, the predictive skill for the Indian Ocean Dipole (IOD) remains typically limited to a lead time of one season or less in both dynamical and empirical models. Here we develop a simple stochastic‐dynamical model (SDM) to predict the IOD using seasonally modulated El Niño–Southern Oscillation (ENSO) forcing together with a seasonally modulated Indian Ocean coupled ocean‐atmosphere feedback. The SDM, with either observed or forecasted ENSO forcing, exhibits generally higher skill and longer lead times for predicting IOD events than the operational Climate Forecast System version 2 and the Scale Interaction Experiment–Frontier system. The improvements mainly originate from better prediction of ENSO‐dependent IOD events and from reducing false alarms. These results affirm our hypothesis that operational IOD predictability beyond persistence is largely controlled by ENSO predictability and the signal‐to‐noise ratio of the system. Therefore, potential future ENSO improvements in models should translate to more skillful IOD predictions.more » « less
-
Abstract Identifying the origins of wintertime climate variations in the Northern Hemisphere requires careful attribution of the role of El Niño–Southern Oscillation (ENSO). For example, Aleutian low variability arises from internal atmospheric dynamics and is remotely forced mainly via ENSO. How ENSO modifies the local sea surface temperature (SST) and North American precipitation responses to Aleutian low variability remains unclear, as teasing out the ENSO signal is difficult. This study utilizes carefully designed coupled model experiments to address this issue. In the absence of ENSO, a deeper Aleutian low drives a positive Pacific decadal oscillation (PDO)-like SST response. However, unlike the observed PDO pattern, a coherent zonal band of turbulent heat flux–driven warm SST anomalies develops throughout the subtropical North Pacific. Furthermore, non-ENSO Aleutian low variability is associated with a large-scale atmospheric circulation pattern confined over the North Pacific and North America and dry precipitation anomalies across the southeastern United States. When ENSO is included in the forcing of Aleutian low variability in the experiments, the ENSO teleconnection modulates the turbulent heat fluxes and damps the subtropical SST anomalies induced by non-ENSO Aleutian low variability. Inclusion of ENSO forcing results in wet precipitation anomalies across the southeastern United States, unlike when the Aleutian low is driven by non-ENSO sources. Hence, we find that the ENSO teleconnection acts to destructively interfere with the subtropical North Pacific SST and southeastern United States precipitation signals associated with non-ENSO Aleutian low variability.more » « less
-
Abstract The influence of El Niño–Southern Oscillation (ENSO) in the Asian monsoon region can persist through the post-ENSO summer, after the sea surface temperature (SST) anomalies in the tropical Pacific have dissipated. The long persistence of coherent post-ENSO anomalies is caused by a positive feedback due to interbasin ocean–atmospheric coupling, known as the Indo-western Pacific Ocean capacitor (IPOC) effect, although the feedback mechanism itself does not necessarily rely on the antecedence of ENSO events, suggesting the potential for substantial internal variability independent of ENSO. To investigate the respective role of ENSO forcing and non-ENSO internal variability, we conduct ensemble “forecast” experiments with a full-physics, globally coupled atmosphere–ocean model initialized from a multidecadal tropical Pacific pacemaker simulation. The leading mode of internal variability as represented by the forecast-ensemble spread resembles the post-ENSO IPOC, despite the absence of antecedent ENSO forcing by design. The persistent atmospheric and oceanic anomalies in the leading mode highlight the positive feedback mechanism in the internal variability. The large sample size afforded by the ensemble spread allows us to identify robust non-ENSO precursors of summer IPOC variability, including a cool SST patch over the tropical northwestern Pacific, a warming patch in the tropical North Atlantic, and downwelling oceanic Rossby waves in the tropical Indian Ocean south of the equator. The pathways by which the precursors develop into the summer IPOC mode and the implications for improved predictability are discussed.more » « less
-
Abstract. Future changes in the El Niño–Southern Oscillation (ENSO) are uncertain, both because future projections differ between climate models and because the large internal variability of ENSO clouds the diagnosis of forced changes in observations and individual climate model simulations. By leveraging 14 single model initial-condition large ensembles (SMILEs), we robustly isolate the time-evolving response of ENSO sea surface temperature (SST) variability to anthropogenic forcing from internal variability in each SMILE. We find nonlinear changes in time in many models and considerable inter-model differences in projected changes in ENSO and the mean-state tropical Pacific zonal SST gradient. We demonstrate a linear relationship between the change in ENSO SST variability and the tropical Pacific zonal SST gradient, although forced changes in the tropical Pacific SST gradient often occur later in the 21st century than changes in ENSO SST variability, which can lead to departures from the linear relationship. Single-forcing SMILEs show a potential contribution of anthropogenic forcing (aerosols and greenhouse gases) to historical changes in ENSO SST variability, while the observed historical strengthening of the tropical Pacific SST gradient sits on the edge of the model spread for those models for which single-forcing SMILEs are available. Our results highlight the value of SMILEs for investigating time-dependent forced responses and inter-model differences in ENSO projections. The nonlinear changes in ENSO SST variability found in many models demonstrate the importance of characterizing this time-dependent behavior, as it implies that ENSO impacts may vary dramatically throughout the 21st century.more » « less