Abstract Between 81°30ʹE and 83°E, the Himalayan range's “perfect” arcuate shape is interrupted by an embayment. We hypothesize that thrust geometry and duplexing along the megathrust at midlower‐crustal depths play a leading role in growth of the embayment as well the southern margin of the Tibetan plateau. To test this hypothesis, we conducted thermokinematic modeling of published thermochronologic data from the topographic and structural embayment in the western Nepal Himalaya to investigate the three‐dimensional geometry and kinematics of the megathrust at midlower‐crustal depths. Models that can best reproduce observed cooling ages suggest that the megathrust in the western Nepal Himalaya is best described as two ramps connected by a long flat that extends further north than in segments to the east and west. These models suggest that the high‐slope zone along the embayment lies above the foreland limb of an antiformal crustal accretion zone on the megathrust with lateral and oblique ramps at midlower‐crustal depths. The lateral and oblique ramps may have initiated by ca. 10 Ma. This process may have controlled along‐strike variation in Himalayan‐plateau growth and therefore development of the topographic embayment. Finally, we analyze geological and morphologic features and propose an evolution model in which landscape and drainage systems across the central‐western Himalaya evolve in response to crustal accretion at depth and the three‐dimensional geometry of the megathrust. Our work highlights the importance of crustal accretion at different depths in orogenic‐wedge growth and that the midlower crustal accretion determines the location of plateau edge.
more »
« less
Three-dimensional strain accumulation and partitioning in an arcuate orogenic wedge: An example from the Himalaya
In this study, we use published geologic maps and cross-sections to construct a three-dimensional geologic model of major shear zones that make up the Himalayan orogenic wedge. The model incorporates microseismicity, megathrust coupling, and various derivatives of the topography to address several questions regarding observed crustal strain patterns and how they are expressed in the landscape. These questions include: (1) How does vertical thickening vary along strike of the orogen? (2) What is the role of oblique convergence in contributing to along-strike thickness variations and the style of deformation? (3) How do variations in the coupling along the megathrust affect the overlying structural style? (4) Do lateral ramps exist along the megathrust? (5) What structural styles underlie and are possibly responsible for the generation of high-elevation, low-relief landscapes? Our model shows that the orogenic core of the western and central Himalaya displays significant along-strike variation in its thickness, from ∼25−26 km in the western Himalaya to ∼34−42 km in the central Himalaya. The thickness of the orogenic core changes abruptly across the western bounding shear zone of the Gurla Mandhata metamorphic core complex, demonstrating a change in the style of strain there. Pressure-temperature-time results indicate that the thickness of the orogenic core at 37 Ma is 17 km. Assuming this is constant along strike from 81°E to 85°E indicates that, the western and central Nepal Himalaya have been thickened by 0.5 and 1−1.5 times, respectively. West of Gurla Mandhata the orogenic core is significantly thinner and underlies a large 11,000 km2 Neogene basin (Zhada). A broad, thick orogenic core associated with thrust duplexing is collocated with an 8500 km2 high-elevation, low-relief surface in the Mugu-Dolpa region of west Nepal. We propose that these results can be explained by oblique convergence along a megathrust with an along-strike and down-dip heterogeneous coupling pattern influenced by frontal and oblique ramps along the megathrust.
more »
« less
- Award ID(s):
- 1827863
- PAR ID:
- 10151040
- Date Published:
- Journal Name:
- GSA Bulletin
- ISSN:
- 0016-7606
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Flow connectivity between master and relay faults in the Ikertôq shear zone demonstrates that multiple ruptures during ancient earthquakes occurred during a single seismic event. The Ikertôq shear zone (ISZ) is part of the Paleoproterozoic Nagssuqtoqidian orogeny continental collision in West Greenland that includes a > 50 km pseudotachylyte system. As part of an NSF REU, this team mapped various faults throughout a 2 km transect on high-resolution UAV images of exhumed pseudotachylyte vein systems on the western end of Sarfannguit island to investigate the kinematics of multi-fault ruptures during individual seismic events. Pseudotachylyte veins exhibit a complex rupture geometry with linked kinematics between oblique reverse master faults striking approximately 240 and steep east-west relay faults dominated by strike-slip movement. Near complete exposure of veins provide a unique opportunity to document fault linkages and the partitioning of slip, including the interconnectivity of flow patterns of melt in pseudotachylyte veins, as well as angular ladders of melt. We measured the thickness of pseudotachylyte fault veins and injection veins along transects to examine slip partitioning between multiple reverse faults and strike-slip relay faults. Melt thickness is used as a proxy for earthquake slip since the pseudotachylyte melt occurred on faults that exhibit preexisting brittle displacement. The results of preliminary calculations from energy balance equations show that typical slip on some oblique reverse master faults was on the order of a meter or less, while typical slip on some east-west relay faults was cm scale. Our data clarify that most slip occurred on oblique reverse master faults with subsidiary slip on east-west relay faults.more » « less
-
The Himalaya is known for dramatically rugged landscapes including the highest mountains in the world. However, there is a limited understanding of the timing of attainment of high elevation and relief formation, especially in the Nepalese Himalaya. Anomalous high-elevation low-relief (HELR) surfaces, which exhibit geomorphic antiquity and are possibly remnants of formerly widespread high-elevation paleosurfaces, provide a unique opportunity to assess the attainment of regional high elevation in the Himalaya. The Bhumichula plateau is one such HELR surface (4300−4800 m) in the western Nepalese Himalayan fold-thrust belt. The Bhumichula plateau is situated in the Dadeldhura klippe (also called the Karnali klippe), an outlier of Greater Himalayan Sequence high-grade metasedimentary/igneous rocks surrounded by structurally underlying Lesser Himalayan Sequence low-grade metasedimentary rocks. We assess the origin of the Bhumichula plateau by combining regional geological relationships and zircon and apatite (U-Th-Sm)/He and apatite fission track thermochronologic ages. The HELR surface truncates pervasive west-southwestward dipping foliations, indicating that it post-dates tilting of rocks in the hanging wall of the Main Central thrust above the Lesser Himalayan duplex. This suggests that the surface originated at high elevation by erosional beveling of thickened, uplifted crust. Exhumation through the ∼180−60 °C thermal window occurred during middle Miocene for samples on the plateau and between middle and late Miocene for rocks along the Tila River, which bounds the north flank of the Bhumichula plateau. Cooling ages along the Tila River are consistent with erosional exhumation generated by early Miocene emplacement of the Main Central (Dadeldhura) thrust sheet, middle Miocene Ramgarh thrust emplacement, and late Miocene growth of the Lesser Himalayan duplex. The most recent middle-late Miocene exhumation took place as the Tila River and its northward flowing tributaries incised upstream, such that the Bhumichula plateau is a remnant of a more extensive HELR paleolandscape. Alpine glaciation lowered relief on the Bhumichula surface, and surface preservation may owe to its relatively durable lithology, gentle structural relief, and elevation range that is above the rainier Lesser Himalaya.more » « less
-
Abstract Along‐strike variation of the Laurentian rifted margin and the Appalachian orogen has long been recognized in the geologic record. We investigated the manifestation of this along‐strike variation at depth by generating scattered wavefield migration profiles from four dense seismic arrays deployed across the Appalachian orogen at different latitudes. All profiles exhibit a similar crustal thickness decrease of 15–20 km from the Mesoproterozoic Grenville Province to the Paleozoic Appalachian accreted terranes, but the Moho architecture differs dramatically along strike. The profiles beneath the central and southern Appalachians show a smoothly varying Moho geometry; in contrast, there is an abrupt Moho depth offset beneath the New England Appalachians. This contrast in Moho geometry may result from variations in the Laurentian rifted margin architecture, changes in Taconic orogeny subduction polarity, and greater crustal shortening during the Acadian‐Neoacadian orogeny in southern New England and the Alleghanian orogeny in the central and southern Appalachians. A first‐order along‐strike transition in the behavior of Appalachian orogenic processes is located between the central and New England Appalachians.more » « less
-
Abstract The extremely oblique Indo‐Burma subduction zone exhibits dextral strike‐slip faulting along the Sagaing, Kabaw, and Churachandpur‐Mao Faults as well as east‐west shortening between the Sagaing Fault and Bengal Basin. Through regional stress analysis, considering areas from central Tibet, around the eastern Himalaya Syntaxis, to Burma, it has been determined that the principal compressive stress directions align with the principal strain rates. The northeast‐southwest oriented compressive stress direction from the western Shan Plateau continues into Burma. Notably, P axes align with the topographic gradients, and T axes are sub‐parallel to the topographic contours in the Shan Plateau region south of 27°N. These stress patterns are consistent with a gravitational potential energy induced crustal and mantle flow. The alignment of the fast shear wave with the maximum strain rate and the colinear NW‐SE to E‐W fast direction of the SKS wave and T axis determined from focal mechanisms in the Shan Plateau suggest that the mantle lithosphere deforms in concert with the crust. We suggest crust and mantle flow south of the Red River Fault has resulted in widening of the lithosphere in the Shan Plateau in an east‐west direction. Therefore, the Sagaing Fault has bowed approximately 50–100 km westward if we assume that the Sagaing Fault was originally straight. Our results of regional stress inversion are consistent with late Miocene to present E‐W shortening in the Indo‐Burma subduction zone resulting from the release of gravitational potential energy from the central Tibetan Plateau.more » « less
An official website of the United States government

