The resource‐availability hypothesis (RAH) and the intraspecific RAH (RAH intra ), posit that resources, (i.e. nutrients) control plant antiherbivore defenses. Both hypotheses predict that in low‐resource environments, plant growth is slow, and constitutive defense is high. In high‐resource environments, however, the RAH predicts that plant growth is fast, and constitutive defense is low, whereas the RAH intra predicts that increased resources attract more herbivores, and this intensified grazing pressure leads to high constitutive defense. Salt marshes are nutrient‐limited ecosystems threatened by eutrophication and chronic herbivory, yet we know little about how these stressors shape saltmarsh plant antiherbivore defenses, which influence trophic interactions and ecosystem resilience. We manipulated resource availability via nutrient addition and herbivory via the marsh periwinkle Littoraria irrorata , on the saltmarsh foundation species Spartina alterniflora , in mesocosms. Because plant age can also influence trait variation, we measured traits in both original and clonally‐grown new stems. Feeding assays then evaluated how treatments and plant age affected subsequent Littoraria consumption of Spartina . Nutrient addition stimulated growth, while decreasing defensive traits (e.g. fiber and silica content), following the RAH. Herbivory enhanced belowground production and increased stem diameter, yet did not induce defensive traits, contrary to our expectations. Herbivory plus nutrients increased Spartina biomass and reduced phenolics, a defensive trait, further supporting the RAH. Regardless of treatment, clonally‐grown new stems had greater variation in measured traits. Despite altered traits, however, treatments and plant age did not affect Littoraria consumption. Our results support the RAH and part of the RAH intra and suggest: 1) nutrient availability is a primary driver of plant trait change and 2) plant age controls the magnitude of trait variation in Spartina . Further, our findings indicate that eutrophic conditions may not always increase top‒down control by herbivores, and in some instances can enhance saltmarsh resilience against sea‐level rise via stimulated Spartina biomass production.
more »
« less
Intraspecific diversity at two trophic levels influences plant–herbivore interactions
Diversity within species can have community‐level effects similar in magnitude to those of species diversity. Intraspecific diversity in producers and consumers has separately been shown to affect trophic interactions, yet we have little understanding of how variation at these two levels could simultaneously affect trophic interactions. Salt marshes dominated by Spartina alterniflora are an ideal system in which to ask this question as this plant exhibits substantial genetically based trait variation. Further, herbivores can have sizable impacts on Spartina, but the impact of herbivore trait variation is not well understood. We conducted an experiment in a Massachusetts salt marsh to determine how herbivorous crab (Sesarma reticulatum) size diversity and Spartina genotypic diversity affect the plant community. Herbivore effects on plant traits varied by herbivore size, with large crabs generally having stronger impacts on plants. At times, the effect of small crabs on plant traits depended on plant genotypic diversity. The effects of crab size diversity (i.e., small and large crabs combined) were most often predicted by the independent effects of each size class, though there were synergistic effects on stem density, flowering stems, and mean stem height. Finally, we tested whether herbivore size or size diversity could have reciprocal effects on plant genotypic diversity. Small‐ and mixed‐crab treatments promoted plant genotypic richness, whereas large crabs did not. Our results demonstrate that intraspecific diversity at multiple trophic levels can have simultaneous and sometimes interactive effects on species interactions, highlighting the importance of variation within species for understanding species interactions and community processes.
more »
« less
- Award ID(s):
- 1710782
- PAR ID:
- 10151212
- Date Published:
- Journal Name:
- Ecosphere
- ISSN:
- 2150-8925
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Predators regulate communities through top‐down control in many ecosystems. Because most studies of top‐down control last less than a year and focus on only a subset of the community, they may miss predator effects that manifest at longer timescales or across whole food webs. In southeastern US salt marshes, short‐term and small‐scale experiments indicate that nektonic predators (e.g., blue crab, fish, terrapins) facilitate the foundational grass,Spartina alterniflora, by consuming herbivorous snails and crabs. To test both how nekton affect marsh processes when the entire animal community is present, and how prior results scale over time, we conducted a 3‐year nekton exclusion experiment in a Georgia salt marsh using replicated 19.6 m2plots. Our nekton exclusions increased densities of plant‐grazing snails and juvenile deposit‐feeding fiddler crab and, in Year 2, reduced predation on tethered juvenile snails, indicating that nektonic predators control these key macroinvertebrates. However, in Year 3, densities of mesopredatory benthic mud crabs increased threefold in nekton exclusions, erasing the tethered snails' predation refuge. Nekton exclusion had no effect onSpartinabiomass, likely because the observed mesopredator release suppressed grazing snail densities and elevated densities of fiddler crabs, whose burrowing alleviates soil stresses. Structural equation modeling supported the hypotheses that nektonic predators and mesopredators control invertebrate communities, with nektonic predators having stronger total effects onSpartinathan mud crabs by controlling densities of species that both suppress (grazers) and facilitate (fiddler crabs) plant growth. These findings highlight that salt marshes can be resilient to multiyear reductions in nektonic predators if mesopredators are present and that multiple pathways of trophic control manifest in different ways over time to mediate community dynamics. These results highlight that larger scale and longer‐term experiments can illuminate community dynamics not previously understood, even in well‐studied ecosystems such as salt marshes.more » « less
-
Abstract Large mammalian herbivores exert strong top‐down control on plants, which in turn influence most ecological processes. Accordingly, the decline, displacement, or extinction of wild large herbivores in African savannas is expected to alter the physical structure of vegetation, the diversity of plant communities, and downstream ecosystem functions. However, herbivore impacts on vegetation comprise both direct and indirect effects and often depend on herbivore body size and plant type. Understanding how herbivores affect savanna vegetation requires disaggregating the effects of different herbivores and the responses of different plants, as well as accounting for both the structural complexity and composition of plant assemblages. We combined high‐resolution Light Detection and Ranging (LiDAR) with field measurements from size‐selective herbivore exclosures in Kenya to determine how herbivores affect the diversity and physical structure of vegetation, how these impacts vary with body size and plant type, and whether there are predictable associations between plant diversity and structural complexity. Herbivores generally reduced the diversity and abundance of both overstory and understory plants, though the magnitude of these impacts varied substantially as a function of body size and plant type: only megaherbivores (elephants and giraffes) affected tree cover, whereas medium‐ and small‐bodied herbivores had stronger effects on herbaceous diversity and abundance. We also found evidence that herbivores altered the strength and direction of interactions between trees and herbaceous plants, with signatures of facilitation in the presence of herbivores and of competition in their absence. While megaherbivores uniquely affected tree structure, medium‐ and small‐bodied species had stronger (and complementary) effects on metrics of herbaceous vegetation structure. Plant structural responses to herbivore exclusion were species‐specific: of five dominant tree species, just three exhibited significant individual morphological variation across exclosure treatments, and the size class of herbivores responsible for these effects varied across species. Irrespective of exclosure treatment, more species‐rich plant communities were more structurally complex. We conclude that the diversity and architecture of savanna vegetation depend on consumptive and nonconsumptive plant–herbivore interactions; the roles of herbivore diversity, body size, and plant traits in mediating those interactions; and a positive feedback between plant diversity and structural complexity.more » « less
-
ABSTRACT Herbivore fronts can alter plant traits (chemical and/or morphological features) and performance via grazing. Yet, herbivore‐driven trait alterations are rarely considered when assessing how these fronts shape ecosystems, despite the critical role that plant performance plays in ecosystem functioning. We evaluated herbivore fronts created by the purple marsh crab,Sesarma reticulatum, as it consumes the cordgrass,Spartina alterniflora, in Virginian salt marshes.Sesarmafronts form at the head of tidal creeks and move inland, creating a denuded mudflat between the tall‐formSpartinalow marsh (trailing edge) and the short‐formSpartinahigh marsh (leading edge). We quantifiedSesarmafront migration rate, tested ifSesarmaherbivory altered geomorphic processes andSpartinatraits at the trailing and leading edges, and examined how these trait changes persisted through the final 8 weeks of the growing season.Sesarmafront migration in our region is two times slower than fronts in the Southeast United States, andSpartinaretreat rate at the leading edge is greater than the revegetation rate at the trailing edge.Sesarmafronts lowered elevation and decreased sediment shear strength at the trailing edge while having no impact on soil organic matter and bulk density at either edge. At the leading edge,Sesarmagrazing reducedSpartinagrowth traits and defensive ability, and trait changes persisted through the remaining growing season. At the trailing edge, however,Sesarmagrazing promoted belowground biomass production and had limited to no effect on growth or defensive traits. We show that herbivore fronts negatively impact saltmarsh plant traits at their leading edge, potentially contributing to front propagation. In contrast, plants at the trailing edge were more resistant to herbivore grazing and may enhance resilience through elevated belowground biomass production. Future work should consider herbivore‐driven plant trait alterations in the context of herbivore fronts to better predict ecosystem response and recovery.more » « less
-
Abstract Interactions between neighboring plants are critical for biodiversity maintenance in plant populations and communities. Intraspecific trait variation and genome duplication are common in plant species and can drive eco‐evolutionary dynamics through genotype‐mediated plant–plant interactions. However, few studies have examined how species‐wide intraspecific variation may alter interactions between neighboring plants. We investigate how subspecies and ploidy variation in a genetically diverse species, big sagebrush (Artemisia tridentata), can alter the demographic outcomes of plant interactions. Using a replicated, long‐term common garden experiment that represents range‐wide diversity ofA. tridentata, we ask how intraspecific variation, environment, and stand age mediate neighbor effects on plant growth and survival. Spatially explicit models revealed that ploidy variation and subspecies identity can mediate plant–plant interactions but that the effect size varied in time and across experimental sites. We found that demographic impacts of neighbor effects were strongest during early stages of stand development and in sites with greater growth rates. Within subspecies, tetraploid populations showed greater tolerance to neighbor crowding compared to their diploid variants. Our findings provide evidence that intraspecific variation related to genome size and subspecies identity impacts spatial demography in a genetically diverse plant species. Accounting for intraspecific variation in studies of conspecific density dependence will improve our understanding of how local populations will respond to novel genotypes and biotic interaction regimes. As introduction of novel genotypes into local populations becomes more common, quantifying demographic processes in genetically diverse populations will help predict long‐term consequences of plant–plant interactions.more » « less
An official website of the United States government

