The dominant paradigm for assessing ecological responses to climate change assumes that future states of individuals and populations can be predicted by current, species-wide performance variation across spatial climatic gradients. However, if the fates of ecological systems are better predicted by past responses to in situ climatic variation through time, this current analytical paradigm may be severely misleading. Empirically testing whether spatial or temporal climate responses better predict how species respond to climate change has been elusive, largely due to restrictive data requirements. Here, we leverage a newly collected network of ponderosa pine tree-ring time series to test whether statistically inferred responses to spatial versus temporal climatic variation better predict how trees have responded to recent climate change. When compared to observed tree growth responses to climate change since 1980, predictions derived from spatial climatic variation were wrong in both magnitude and direction. This was not the case for predictions derived from climatic variation through time, which were able to replicate observed responses well. Future climate scenarios through the end of the 21st century exacerbated these disparities. These results suggest that the currently dominant paradigm of forecasting the ecological impacts of climate change based on spatial climatic variation may be severely misleading over decadal to centennial timescales.
more »
« less
Increased spatial and temporal autocorrelation of temperature under climate change
Abstract Understanding spatiotemporal variation in environmental conditions is important to determine how climate change will impact ecological communities. The spatial and temporal autocorrelation of temperature can have strong impacts on community structure and persistence by increasing the duration and the magnitude of unfavorable conditions in sink populations and disrupting spatial rescue effects by synchronizing spatially segregated populations. Although increases in spatial and temporal autocorrelation of temperature have been documented in historical data, little is known about how climate change will impact these trends. We examined daily air temperature data from 21 General Circulation Models under the business-as-usual carbon emission scenario to quantify patterns of spatial and temporal autocorrelation between 1871 and 2099. Although both spatial and temporal autocorrelation increased over time, there was significant regional variation in the temporal autocorrelation trends. Additionally, we found a consistent breakpoint in the relationship between spatial autocorrelation and time around the year 2030, indicating an acceleration in the rate of increase of the spatial autocorrelation over the second half of the 21stcentury. Overall, our results suggest that ecological populations might experience elevated extinction risk under climate change because increased spatial and temporal autocorrelation of temperature is expected to erode both spatial and temporal refugia.
more »
« less
- Award ID(s):
- 1635989
- PAR ID:
- 10153218
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Scientific Reports
- Volume:
- 8
- Issue:
- 1
- ISSN:
- 2045-2322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract As climate change intensifies, global publics will experience more unusual weather and extreme weather events. How will individual experiences with these weather trends shape climate change beliefs, attitudes, and behaviors? In this article, we review 73 papers that have studied the relationship between climate change experiences and public opinion. Overall, we find mixed evidence that weather shapes climate opinions. Although there is some support for a weak effect of local temperature and extreme weather events on climate opinion, the heterogeneity of independent variables, dependent variables, study populations, and research designs complicate systematic comparison. To advance research on this critical topic, we suggest that future studies pay careful attention to differences between self-reported and objective weather data, causal identification, and the presence of spatial autocorrelation in weather and climate data. Refining research designs and methods in future studies will help us understand the discrepancies in results, and allow better detection of effects, which have important practical implications for climate communication. As the global population increasingly experiences weather conditions outside the range of historical experience, researchers, communicators, and policymakers need to understand how these experiences shape-and are shaped by-public opinions and behaviors.more » « less
-
Abstract 1. Critical thermal limits represent an important component of an organism's capacity to cope with future temperature changes. Understanding the drivers of variation in these traits may uncover patterns in physiological vulnerability to climate change. Local temperature extremes have emerged as a major driver of thermal limits, although their effects can be mediated by the exploitation of fine‐scale spatial variation in temperature through behavioural thermoregulation. 2. Here, we investigated thermal limits along elevation gradients within and between two cold‐water frog species (Ascaphusspp.), one with a coastal distribution (A. truei) and the other with a continental range (A. montanus). We quantified thermal limits for over 700 tadpoles, representing multiple populations from each species. We combined local temporal and fine‐scale spatial temperature data to quantify local thermal landscapes (i.e., thermalscapes), including the opportunity for behavioural thermoregulation. 3. Lower thermal limits for either species could not be reached experimentally without the water freezing, suggesting that cold tolerance is <0.3°C. By contrast, upper thermal limits varied among populations, but this variation only reflected local temperature extremes inA. montanus, perhaps as a consequence of the greater variation in stream temperatures across its range. Lastly, we found minimal fine‐scale spatial variability in temperature, suggesting limited opportunity for behavioural thermoregulation and thus increased vulnerability to warming for all populations. 4. By quantifying local thermalscapes, we uncovered different trends in the relative vulnerability of populations across elevation for each species. InA. truei, physiological vulnerability decreased with elevation, whereas inA. montanus, all populations were equally physiologically vulnerable. These results highlight how similar environments can differentially shape physiological tolerance and patterns of vulnerability of species, and in turn impact their vulnerability to future warming.more » « less
-
Climate change is shifting the phenology of migratory animals earlier; yet an understanding of how climate change leads to variable shifts across populations, species and communities remains hampered by limited spatial and taxonomic sampling. In this study, we used a hierarchical Bayesian model to analyse 88,965 site‐specific arrival dates from 222 bird species over 21 years to investigate the role of temperature, snowpack, precipitation, the El‐Niño/Southern Oscillation and the North Atlantic Oscillation on the spring arrival timing of Nearctic birds. Interannual variation in bird arrival on breeding grounds was most strongly explained by temperature and snowpack, and less strongly by precipitation and climate oscillations. Sensitivity of arrival timing to climatic variation exhibited spatial nonstationarity, being highly variable within and across species. A high degree of heterogeneity in phenological sensitivity suggests diverging responses to ongoing climatic changes at the population, species and community scale, with potentially negative demographic and ecological consequences.more » « less
-
Dr Andrea E. A. Stephens (Ed.)To forecast extinction risks of natural populations under climate change and direct human impacts, an integrative understanding of both phenotypic plasticity and adaptive evolution is essential. To date, the evidence for whether, when, and how much plasticity facilitates adaptive responses in changing environments is contradictory. We argue that explicitly considering three key environmental change components – rate of change, variance, and temporal autocorrelation – affords a unifying framework of the impact of plasticity on adaptive evolution. These environmental components each distinctively effect evolutionary and ecological processes underpinning population viability. Using this framework, we develop expectations regarding the interplay between plasticity and adaptive evolution in natural populations. This framework has the potential to improve predictions of population viability in a changing world.more » « less
An official website of the United States government
