skip to main content


Title: Ecosystem-bedrock interaction changes nutrient compartmentalization during early oxidative weathering
Abstract

Ecosystem-bedrock interactions power the biogeochemical cycles of Earth’s shallow crust, supporting life, stimulating substrate transformation, and spurring evolutionary innovation. While oxidative processes have dominated half of terrestrial history, the relative contribution of the biosphere and its chemical fingerprints on Earth’s developing regolith are still poorly constrained. Here, we report results from a two-year incipient weathering experiment. We found that the mass release and compartmentalization of major elements during weathering of granite, rhyolite, schist and basalt was rock-specific and regulated by ecosystem components. A tight interplay between physiological needs of different biota, mineral dissolution rates, and substrate nutrient availability resulted in intricate elemental distribution patterns. Biota accelerated CO2mineralization over abiotic controls as ecosystem complexity increased, and significantly modified the stoichiometry of mobilized elements. Microbial and fungal components inhibited element leaching (23.4% and 7%), while plants increased leaching and biomass retention by 63.4%. All biota left comparable biosignatures in the dissolved weathering products. Nevertheless, the magnitude and allocation of weathered fractions under abiotic and biotic treatments provide quantitative evidence for the role of major biosphere components in the evolution of upper continental crust, presenting critical information for large-scale biogeochemical models and for the search for stablein situbiosignatures beyond Earth.

 
more » « less
NSF-PAR ID:
10153847
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
9
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The cryosphere hosts a widespread microbial community, yet microbial influences on silicate weathering have been historically neglected in cold‐arid deserts. Here we investigate bioweathering by a cold‐tolerant cyanobacteria (Leptolyngbya glacialis) via laboratory experiments using glaciofluvial drift sediments at 12°C, analogous to predicted future permafrost surface temperatures. Our results show threefold enhanced Si weathering rates in pre‐weathered, mixed‐lithology Antarctic biotic reactors compared to abiotic controls, indicating the significant influence of microbial life on weathering. Although biotic and abiotic weathering rates are similar in Icelandic sediments, neo‐formed clay and Fe‐(oxy)hydroxide minerals observed in association with biofilms in biotic reactors are common on Icelandic mafic minerals, similar to features observed in unprocessed Antarctic drifts. This suggests that microbes enhance weathering in systems where they must scavenge for nutrients that are not easily liberated via abiotic pathways; potential biosignatures may form in nutrient‐rich systems as well. In both sediment types we also observed up to fourfold higher bicarbonate concentrations in biotic reactors relative to abiotic reactors, indicating that, as warming occurs, psychrotolerant biota will enhance bicarbonate flux to the oceans, thus stimulating carbonate deposition and providing a negative feedback to increasing atmospheric CO2.

     
    more » « less
  2. Abstract

    Earth surface redox conditions are intimately linked to the co-evolution of the geosphere and biosphere. Minerals provide a record of Earth’s evolving surface and interior chemistry in geologic time due to many different processes (e.g. tectonic, volcanic, sedimentary, oxidative, etc.). Here, we show how the bipartite network of minerals and their shared constituent elements expanded and evolved over geologic time. To further investigate network expansion over time, we derive and apply a novel metric (weighted mineral element electronegativity coefficient of variation; wMEECV) to quantify intra-mineral electronegativity variation with respect to redox. We find that element electronegativity and hard soft acid base (HSAB) properties are central factors in mineral redox chemistry under a wide range of conditions. Global shifts in mineral element electronegativity and HSAB associations represented by wMEECVchanges at 1.8 and 0.6 billion years ago align with decreased continental elevation followed by the transition from the intermediate ocean and glaciation eras to post-glaciation, increased atmospheric oxygen in the Phanerozoic, and enhanced continental weathering. Consequently, network analysis of mineral element electronegativity and HSAB properties reveal that orogenic activity, evolving redox state of the mantle, planetary oxygenation, and climatic transitions directly impacted the evolving chemical complexity of Earth’s crust.

     
    more » « less
  3. Abstract

    Anthropogenic nitrogen deposition is widely considered to increase CO2sequestration by land plants on a global scale. Here, we demonstrate that bedrock nitrogen weathering contributes significantly more to nitrogen‐carbon interactions than anthropogenic nitrogen deposition. This working hypothesis is based on the introduction of empirical results into a global biogeochemical simulation model over the time period of the mid‐1800s to the end of the 21st century. Our findings suggest that rock nitrogen inputs have contributed roughly 2–11 times more to plant CO2capture than nitrogen deposition inputs since pre‐industrial times. Climate change projections based on RCP 8.5 show that rock nitrogen inputs and biological nitrogen fixation contribute 2–5 times more to terrestrial carbon uptake than anthropogenic nitrogen deposition though year 2101. Future responses of rock N inputs on plant CO2capture rates are more signficant at higher latitudes and in mountainous environments, where geological and climate factors promote higher rock weathering rates. The enhancement of plant CO2uptake via rock nitrogen weathering partially resolves nitrogen‐carbon discrepancies in Earth system models and offers an alternative explanation for lack of progressive nitrogen limitation in the terrestrial biosphere. We conclude that natural N inputs impart major control over terrestrial CO2sequestration in Earth’s ecosystems.

     
    more » « less
  4. Abstract

    Models of ecosystem development and response to environmental variation must incorporate change in vertical soil space as well as over time. Insufficient measurement of subsurface soil properties represents a major observational bias in ecosystem studies.

    We address these changes in horizontal (time) and vertical (soil profile) space along a three‐million‐year, semi‐arid, piñon‐juniper woodland substrate age gradient with characteristic progressive and retrogressive ecosystem development phases and a shift from nitrogen (N) and water to phosphorus (P) limitation. We present a novel pedological approach using isotopic tracers and biogeochemical analyses to address fine root distribution, depth of plant uptake and relative nutrient availabilities.

    We show that (a) the quantity of fine roots remains constant with ecosystem development but their distribution in the soil profile becomes increasingly deeper and less concentrated in the surface soil; (b) mean depth of tree uptake becomes deeper with substrate age and follows the relative availability of P as P‐limitation develops and (c) soil P transformations in the oldest soil profiles resemble the theoretical changes with age to produce a depth gradient of relative N and P availability.

    Synthesis. The expanding role of deep roots in this model system is tightly linked to phases of ecosystem development and relative nutrient availability. The inclusion of whole soil profiles is vital to investigating the intersections of biota, soil and geologic substrate and developing a more complete understanding of ecosystem structure and function.

     
    more » « less
  5. Abstract

    Boreal‐Arctic regions are key stores of organic carbon (C) and play a major role in the greenhouse gas balance of high‐latitude ecosystems. The carbon‐climate (C‐climate) feedback potential of northern high‐latitude ecosystems remains poorly understood due to uncertainty in temperature and precipitation controls on carbon dioxide (CO2) uptake and the decomposition of soil C into CO2and methane (CH4) fluxes. While CH4fluxes account for a smaller component of the C balance, the climatic impact of CH4outweighs CO2(28–34 times larger global warming potential on a 100‐year scale), highlighting the need to jointly resolve the climatic sensitivities of both CO2and CH4. Here, we jointly constrain a terrestrial biosphere model with in situ CO2and CH4flux observations at seven eddy covariance sites using a data‐model integration approach to resolve the integrated environmental controls on land‐atmosphere CO2and CH4exchanges in Alaska. Based on the combined CO2and CH4flux responses to climate variables, we find that 1970‐present climate trends will induce positive C‐climate feedback at all tundra sites, and negative C‐climate feedback at the boreal and shrub fen sites. The positive C‐climate feedback at the tundra sites is predominantly driven by increased CH4emissions while the negative C‐climate feedback at the boreal site is predominantly driven by increased CO2uptake (80% from decreased heterotrophic respiration, and 20% from increased photosynthesis). Our study demonstrates the need for joint observational constraints on CO2and CH4biogeochemical processes—and their associated climatic sensitivities—for resolving the sign and magnitude of high‐latitude ecosystem C‐climate feedback in the coming decades.

     
    more » « less