skip to main content


Title: The expanding role of deep roots during long‐term terrestrial ecosystem development
Abstract

Models of ecosystem development and response to environmental variation must incorporate change in vertical soil space as well as over time. Insufficient measurement of subsurface soil properties represents a major observational bias in ecosystem studies.

We address these changes in horizontal (time) and vertical (soil profile) space along a three‐million‐year, semi‐arid, piñon‐juniper woodland substrate age gradient with characteristic progressive and retrogressive ecosystem development phases and a shift from nitrogen (N) and water to phosphorus (P) limitation. We present a novel pedological approach using isotopic tracers and biogeochemical analyses to address fine root distribution, depth of plant uptake and relative nutrient availabilities.

We show that (a) the quantity of fine roots remains constant with ecosystem development but their distribution in the soil profile becomes increasingly deeper and less concentrated in the surface soil; (b) mean depth of tree uptake becomes deeper with substrate age and follows the relative availability of P as P‐limitation develops and (c) soil P transformations in the oldest soil profiles resemble the theoretical changes with age to produce a depth gradient of relative N and P availability.

Synthesis. The expanding role of deep roots in this model system is tightly linked to phases of ecosystem development and relative nutrient availability. The inclusion of whole soil profiles is vital to investigating the intersections of biota, soil and geologic substrate and developing a more complete understanding of ecosystem structure and function.

 
more » « less
NSF-PAR ID:
10453711
Author(s) / Creator(s):
 ;  ;  ;  ;  ;
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of Ecology
Volume:
108
Issue:
6
ISSN:
0022-0477
Page Range / eLocation ID:
p. 2256-2269
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Differences in vertical root distributions are often assumed to create resource uptake trade‐offs that determine plant growth and coexistence. Yet, most plant roots are in shallow soils, and data linking root distributions with resource uptake and plant abundances remain elusive.

    Here we used a tracer experiment to describe the vertical distribution of absorptive roots of dominant species in a shrub–steppe ecosystem. To describe how these different rooting distributions affected water uptake in wet and dry soils across a growing season, we used a soil water movement model. Root traits were then correlated with plant landscape abundances.

    Deeper root distributions extracted more soil water, had larger unique hydrological niches and were more abundant on the landscape. Though most (>50%) root biomass and tracer uptake occurred in shallow soils (0–32 cm), the depth of 50% of tracer uptake varied from 11 to 32 cm across species and species with deeper rooting distributions were more abundant on the landscape (R2 = .95). The water flow model revealed that deeper rooting distributions should extract more soil water (i.e. a range of 60–113 mm of soil water) because shallow roots were often in dry soils. These potential water uptake values were tightly correlated with species’ abundances on the landscape (R2 = .90). Finally, each species’ rooting distribution demonstrated a depth and time at which it could extract more soil water than any other rooting distribution, and the size of these unique hydrological niches indices was also well correlated with species’ abundances (R2 = .89).

    Synthesis. Our results demonstrate not only a correlation between root distributions and species abundance, but also the mechanism through which differences in rooting distributions can determine resource uptake and niche partitioning, even when most roots are found in shallow soils.

     
    more » « less
  2. Abstract

    In savannas, partitioning of below‐ground resources by depth could facilitate tree–grass coexistence and shape vegetation responses to changing rainfall patterns. However, most studies assessing tree versus grass root‐niche partitioning have focused on one or two sites, limiting generalization about how rainfall and soil conditions influence the degree of rooting overlap across environmental gradients.

    We used two complementary stable isotope techniques to quantify variation (a) in water uptake depths and (b) in fine‐root biomass distributions among dominant trees and grasses at eight semi‐arid savanna sites in Kruger National Park, South Africa. Sites were located on contrasting soil textures (clayey basaltic soils vs. sandy granitic soils) and paired along a gradient of mean annual rainfall.

    Soil texture predicted variation in mean water uptake depths and fine‐root allocation. While grasses maintained roots close to the surface and consistently used shallow water, trees on sandy soils distributed roots more evenly across soil depths and used deeper soil water, resulting in greater divergence between tree and grass rooting on sandy soils. Mean annual rainfall predicted some variation among sites in tree water uptake depth, but had a weaker influence on fine‐root allocation.

    Synthesis. Savanna trees overlapped more with shallow‐rooted grasses on clayey soils and were more distinct in their use of deeper soil layers on sandy soils, consistent with expected differences in infiltration and percolation. These differences, which could allow trees to escape grass competition more effectively on sandy soils, may explain observed differences in tree densities and rates of woody encroachment with soil texture. Differences in the degree of root‐niche separation could also drive heterogeneous responses of savanna vegetation to predicted shifts in the frequency and intensity of rainfall.

     
    more » « less
  3. Abstract

    Light is a key resource for tree performance and hence, tree species partition spatial and temporal gradients in light availability. Although light distribution drives tree performance and species replacement during secondary forest succession, we yet lack understanding how light distribution changes with tropical forest development.

    This study aims to evaluate how changes in forest structure lead to changes in vertical and horizontal light heterogeneity during tropical forest succession.

    We described successional patterns in light using a chronosequence approach in which we compared 14 Mexican secondary forest stands that differ in age (8–32 years) since agricultural abandonment. For each stand, we measured vertical light profiles in 16 grid cells, and structural parameters (diameter at breast height, height and crown dimensions) for each tree.

    During succession, we found a rapid increase in stand size (basal area, crown area and length) and stand differentiation (i.e. a gradual leaf distribution along the forest profile), which leads to fast changes in light conditions and more light heterogeneity. The inflection points of the vertical light gradient (i.e. the absolute height at which 50% relative light intensity is attained) rapidly moved towards higher heights in the first 20 years, indicating that larger amounts of light are intercepted by canopy trees. Light attenuation rate (i.e. the rate of light extinction) decreased during succession due to slower accumulation of the crown area with height. Understorey light intensity and heterogeneity slightly decreased during succession because of an increase in crown size and a decrease in lateral gap frequency. Understorey relative light intensity was 1.56% at 32 years after abandonment.

    Synthesis. During succession, light conditions changed linearly, which should lead to a continuous and constant replacement of species. Especially in later successional stages, stronger vertical light gradients can limit the regeneration of light‐demanding pioneer species and increase the proportion of shade‐tolerant late‐successional species under the canopy. These changes in light conditions were largely driven by the successional changes in forest structure, as basal area strongly determined the height where most light is absorbed, whereas crown area, and to a lesser extent crown length, determined light distribution.

     
    more » « less
  4. Abstract

    Despite their low contribution to forest carbon stocks, lianas (woody vines) play an important role in the carbon dynamics of tropical forests. As structural parasites, they hinder tree survival, growth and fecundity; hence, they negatively impact net ecosystem productivity and long‐term carbon sequestration.

    Competition (for water and light) drives various forest processes and depends on the local abundance of resources over time. However, evaluating the relative role of resource availability on the interactions between lianas and trees from empirical observations is particularly challenging. Previous approaches have used labour‐intensive and ecosystem‐scale manipulation experiments, which are infeasible in most situations.

    We propose to circumvent this challenge by evaluating the uncertainty of water and light capture processes of a process‐based vegetation model (ED2) including the liana growth form. We further developed the liana plant functional type in ED2 to mechanistically simulate water uptake and transport from roots to leaves, and start the model from prescribed initial conditions. We then used the PEcAn bioinformatics platform to constrain liana parameters and run uncertainty analyses.

    Baseline runs successfully reproduced ecosystem gas exchange fluxes (gross primary productivity and latent heat) and forest structural features (leaf area index, aboveground biomass) in two sites (Barro Colorado Island, Panama and Paracou, French Guiana) characterized by different rainfall regimes and levels of liana abundance.

    Model uncertainty analyses revealed that water limitation was the factor driving the competition between trees and lianas at the drier site (BCI), and during the relatively short dry season of the wetter site (Paracou). In young patches, light competition dominated in Paracou but alternated with water competition between the wet and the dry season on BCI according to the model simulations.

    The modelling workflow also identified key liana traits (photosynthetic quantum efficiency, stomatal regulation parameters, allometric relationships) and processes (water use, respiration, climbing) driving the model uncertainty. They should be considered as priorities for future data acquisition and model development to improve predictions of the carbon dynamics of liana‐infested forests.

    Synthesis. Competition for water plays a larger role in the interaction between lianas and trees than previously hypothesized, as demonstrated by simulations from a process‐based vegetation model.

     
    more » « less
  5. Abstract

    Leaf‐cutter ants are a prominent feature in Neotropical ecosystems, but a comprehensive assessment of their effects on ecosystem functions is lacking. We reviewed the literature and used our own recent findings to identify knowledge gaps and develop a framework to quantify the effects of leaf‐cutter ants on ecosystem processes.

    Leaf‐cutter ants disturb the soil structure during nest excavation changing soil aeration and temperature. They mix relatively nutrient‐poor soil from deeper layers with the upper organic‐rich layers increasing the heterogeneity of carbon and nutrients within nest soils.

    Leaf‐cutter ants account for about 25% of all herbivory in Neotropical forest ecosystems, moving 10%–15% of leaves in their foraging range to their nests. Fungal symbionts transform the fresh, nutrient‐rich vegetative material to produce hyphal nodules to feed the ants. Organic material from roots and arbuscular mycorrhizal fungi enhances carbon and nutrient turnover in nest soils and creates biogeochemical hot spots. Breakdown of organic matter, microbial and ant respiration, and nest waste material decomposition result in increased CO2, CH4,and N2O production, but the build‐up of gases and heat within the nest is mitigated by the tunnel network ventilation system. Nest ventilation dynamics are challenging to measure without bias, and improved sensor systems would likely solve this problem.

    Canopy gaps above leaf‐cutter ant nests change the light, wind and temperature regimes, which affects ecosystem processes. Nests differ in density and size depending on colony age, forest type and disturbance level and change over time resulting in spatial and temporal changes of ecosystem processes. These characteristics remain a challenge to evaluate rapidly and non‐destructively.

    Addressing the knowledge gaps identified in this synthesis will bring insights into physical and biological processes driving biogeochemical cycles at the nest and ecosystem scale and will improve our understanding of ecosystem biogeochemical heterogeneity and larger scale ecological phenomena.

    Aplain language summaryis available for this article.

     
    more » « less