Intense few-cycle laser pulses have a breadth of applications in high energy density science, including particle acceleration and x-ray generation. Multi-amplifier laser system pulses have durations of tens of femtoseconds or longer. To achieve high intensities at the single-cycle limit, a robust and efficient post-compression scheme is required. We demonstrate a staged compression technique using self-phase modulation in thin dielectric media, in which few-cycle pulses can be produced. The few-cycle pulse is then used to generate extreme ultravoilet light via high harmonic generation at strong field intensities and to generate MeV electron beams via laser solid interactions at relativistic intensities.
more »
« less
High-field nonlinear optical response and phase control in a dielectric laser accelerator
Abstract Advances in ultrafast laser technology and nanofabrication have enabled a new class of particle accelerator based upon miniaturized laser-driven photonic structures. However, developing a useful accelerator based on this approach requires control of the particle dynamics at field intensities approaching the damage limit. We measure acceleration in a fused silica dielectric laser accelerator driven by fields of up to 9 GV m−1and observe a record 1.8 GV m−1in the accelerating mode. At these intensities the dielectric is driven beyond its linear response and self-phase modulation changes the phase velocity of the accelerating mode, reducing the average gradient to 850 MeV m−1. We show that free-space optics can be used to compensate this dephasing and demonstrate that tailoring the laser phase and amplitude can facilitate optimization of the beam dynamics. This could enable MeV scale energy gain in a single stage and pave the way towards applications in scientific, industrial, and medical fields.
more »
« less
- Award ID(s):
- 1734215
- PAR ID:
- 10154086
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Communications Physics
- Volume:
- 1
- Issue:
- 1
- ISSN:
- 2399-3650
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The rapid progress that plasma wakefield accelerators are experiencing is now posing the question as to whether they could be included in the design of the next generation of high-energy electron-positron colliders. However, the typical structure of the accelerating wakefields presents challenging complications for positron acceleration. Despite seminal proof-of-principle experiments and theoretical proposals, experimental research in plasma-based acceleration of positrons is currently limited by the scarcity of positron beams suitable to seed a plasma accelerator. Here, we report on the first experimental demonstration of a laser-driven source of ultra-relativistic positrons with sufficient spectral and spatial quality to be injected in a plasma accelerator. Our results indicate, in agreement with numerical simulations, selection and transport of positron beamlets containing$$N_{e+}\ge 10^5$$ positrons in a 5% bandwidth around 600 MeV, with femtosecond-scale duration and micron-scale normalised emittance. Particle-in-cell simulations show that positron beams of this kind can be guided and accelerated in a laser-driven plasma accelerator, with favourable scalings to further increase overall charge and energy using PW-scale lasers. The results presented here demonstrate the possibility of performing experimental studies of positron acceleration in a laser-driven wakefield accelerator.more » « less
-
null (Ed.)Abstract Laser wakefield accelerators promise to revolutionize many areas of accelerator science. However, one of the greatest challenges to their widespread adoption is the difficulty in control and optimization of the accelerator outputs due to coupling between input parameters and the dynamic evolution of the accelerating structure. Here, we use machine learning techniques to automate a 100 MeV-scale accelerator, which optimized its outputs by simultaneously varying up to six parameters including the spectral and spatial phase of the laser and the plasma density and length. Most notably, the model built by the algorithm enabled optimization of the laser evolution that might otherwise have been missed in single-variable scans. Subtle tuning of the laser pulse shape caused an 80% increase in electron beam charge, despite the pulse length changing by just 1%.more » « less
-
Abstract Laser wakefield accelerators (LWFAs) have electric fields that are orders of magnitude larger than those of conventional accelerators, promising an attractive, small-scale alternative for next-generation light sources and lepton colliders. The maximum energy gain in a single-stage LWFA is limited by dephasing, which occurs when the trapped particles outrun the accelerating phase of the wakefield. Here, we demonstrate that a single space–time structured laser pulse can be used for ionization injection and electron acceleration over many dephasing lengths in the bubble regime. Simulations of a dephasingless laser wakefield accelerator driven by a 6.2-J laser pulse show 25 pC of injected charge accelerated over 20 dephasing lengths (1.3 cm) to a maximum energy of 2.1 GeV. The space–time structured laser pulse features an ultrashort, programmable-trajectory focus. Accelerating the focus, reducing the focused spot-size variation, and mitigating unwanted self-focusing stabilize the electron acceleration, which improves beam quality and leads to projected energy gains of 125 GeV in a single, sub-meter stage driven by a 500-J pulse.more » « less
-
Abstract Plasma-based accelerators use the strong electromagnetic fields that can be supported by plasmas to accelerate charged particles to high energies. Accelerating field structures in plasma can be generated by powerful laser pulses or charged particle beams. This research field has recently transitioned from involving a few small-scale efforts to the development of national and international networks of scientists supported by substantial investment in large-scale research infrastructure. In this New Journal of Physics 2020 Plasma Accelerator Roadmap, perspectives from experts in this field provide a summary overview of the field and insights into the research needs and developments for an international audience of scientists, including graduate students and researchers entering the field.more » « less
An official website of the United States government
