skip to main content


Title: Accomplishing a N-E-W (nutrient-energy-water) synergy in a bioelectrochemical nitritation-anammox process
Abstract

This study reports an investigation of the concept, application and performance of a novel bioelectrochemical nitritation-anammox microbial desalination cell (MDC) for resource-efficient wastewater treatment and desalination. Two configurations of anammox MDCs (anaerobic-anammox cathode MDC (AnAmoxMDC) and nitration-anammox cathode MDC (NiAmoxMDC)) were compared with an air cathode MDC (CMDC), operated in fed-batch mode. Results from this study showed that the maximum power density produced by NiAmoxMDC (1,007 mW/m3) was higher than that of AnAmoxMDC (444 mW/m3) and CMDC (952 mW/m3). More than 92% of ammonium-nitrogen (NH4+-N) removal was achieved in NiAmoxMDC, significantly higher than AnAmoxMDC (84%) and CMDC (77%). The NiAmoxMDC performed better than CMDC and AnAmoxMDC in terms of power density, COD removal and salt removal in desalination chamber. In addition, cyclic voltammetry analysis of anammox cathode showed a redox peak centered at −140 mV Vs Ag/AgCl confirming the catalytic activity of anammox bacteria towards the electron transfer process. Further, net energy balance of the NiAmoxMDC was the highest (NiAmoxMDC-0.022 kWh/m3>CMDC-0.019 kWh/m3>AnAmoxMDC-0.021 kWh/m3) among the three configurations. This study demonstrated, for the first time, a N-E-W synergy for resource-efficient wastewater treatment using nitritation-anammox process.

 
more » « less
NSF-PAR ID:
10154150
Author(s) / Creator(s):
;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
9
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Practitioner points

    Nitritation‐anammox treatment is an attractive method for mainstream wastewater treatment.

    Nitrate residue from anammox processes contributes to total nitrogen in the final effluent.

    Recirculation of anammox effluent to an anaerobic reactor can decrease nitrate residue.

    A recirculation ratio of 50% results in a low COD/NH4+ratio of 2 that benefits the subsequent anammox.

     
    more » « less
  2. This study presents the use of an autotrophic microorganism, Anammox bacteria, as a sustainable biocatalyst/biocathode in microbial desalination cells (MDCs) for energy-positive wastewater treatment. We report the first proof of concept study to prove that anammox mechanism can be beneficial in MDCs to provide simultaneous removal of carbon and nitrogen compounds from wastewater while producing bioelectricity. A series of experiments were conducted to enrich and evaluate the anammox mechanism and the process performance in continuous, fed-batch mode conditions. Coulombic efficiency of MDCs and nitrite and ammonium removal of wastewater increased in successive batch studies. A maximum power density of 0.092 Wm−3 (or a maximum current density of 0.814 A m−3) with more than 90% of ammonium removal was achieved in this system. We calculated the Nernst potential for the nitrite reduction in the anammox biocathode chamber and compared with experimental values. Sequential removal of carbon and nitrogen compounds in anode and cathode chambers respectively, was also evaluated. Further, the inhibition effect of high nitrogen concentrations and the variations in microbial community profiles, especially, anammox presence was studied at different carbon and ammonia concentrations. Experimental studies and microbial community analysis are presented in detail. 
    more » « less
  3. Abstract

    Electricity consumption and greenhouse gas (GHG) emissions associated with wastewater flows from residential and commercial water use in three major cities of the United States are analyzed and compared for the period 2010–2018. Contributions of unit wastewater treatment processes and electricity sources to the overall emissions are considered. Tucson (Arizona), Denver (Colorado), and Washington, DC were chosen for their distinct locations, climatic conditions, raw water sources, wastewater treatment technologies, and electric power mixes. Denver experienced a 20% reduction in treated wastewater volumes per person despite a 16% increase in population. In Washington, DC, the reduction was 19%, corresponding to a 16% increase in population, and in Tucson 14% despite a population growth of 3%. The electricity intensity per volume of treated wastewater was higher in Tucson (1 kWh m−3) than in Washington, DC (0.7 kWh m−3) or Denver (0.5 kWh m−3). Tucson’s GHG emissions per person were about six times higher compared to Denver and four times higher compared to Washington, DC. Wastewater treatment facilities in Denver and Washington, DC generated a quarter to third of their electricity needs from onsite biogas and lowered their GHG emissions by offsetting purchases from the grid, including coal-generated electricity. The higher GHG emission intensity in Tucson is a reflection of coal majority in the electricity mix in the period, gradually replaced with natural gas, solar, and biogas. In 2018, the GHG reduction was 20% when the share of solar electricity increased to 14% from zero in 2016. In the analysis period, reduced wastewater volumes relative to the 2010 baseline saved Denver 44 000 MWh, Washington, DC 11 000 MWh and Tucson 7000 MWh of electricity. As a result, Washington, DC managed to forgo 21 000 metric tons of CO2-eqand Denver 34 000 metric tons, while Tucson’s cumulative emissions increased by 22 000 metric tons of CO2-eq. This study highlights the variability observed in water systems and the opportunities that exist with water savings to allow for wastewater generation reduction, recovering energy from onsite biogas, and using energy-efficient wastewater treatment technologies.

     
    more » « less
  4. This research investigates a novel platform for an energy-yielding wastewater treatment and desalination scheme in which the organic matter present in wastewater is purposely fed to the exoelectrogenic bacteria to produce bioelectricity in a three-compartment bioelectrochemical system called photosynthetic microbial desalination cell (PMDC). The role of an inorganic carbon source in the microalgae biocathode was studied. Addition of sodium bicarbonate (NaHCO3) increased power production, microalgae growth and desalination rate. A power density of 660 mW/m3 was measured which is about 7.5 times higher than the PMDCs without NaHCO3. Desalination rate was more than 40% after 72 h. Overall, the process could be energy-positive while producing 4.21 kWh per m3 of wastewater treated including desalination energy savings and microalgae biomass energy potential. 
    more » « less
  5. Abstract Practitioner Points

    This two‐decade UTEP‐EPW research partnership was sustained by a long‐term commitment to research and consistent financial support from EPW.

    Universities can collaborate to leverage utility funding toward larger external grant funding to advance research and development in a win–win partnership.

    The high‐recovery CERRO process was developed through multiple phases of concentrate management research, which would not have been possible without long‐term research commitment and risk tolerance from EPW.

    CERRO systems are being implemented at full scale in El Paso to recover water from silica‐saturated RO concentrate at an estimated specific energy consumption of 1.23 kWh/m3(4.6 kWh/kgal) and total amortized cost of $0.59/m3($2.25/kgal).

     
    more » « less