skip to main content

Title: Designing bioinspired brick-and-mortar composites using machine learning and statistical learning

The brick-and-mortar structure inspired by nature, such as in nacre, is considered one of the most optimal designs for structural composites. Given the large number of design possibilities, extensive computational work is required to guide their manufacturing. Here, we propose a computational framework that combines statistical analysis and machine learning with finite element analysis to establish structure–property design strategies for brick-and-mortar composites. Approximately 20,000 models with different geometrical designs were categorized into good and bad based on their failure modes, with statistical analysis of the results used to find the importance of each feature. Aspect ratio of the bricks and horizontal mortar thickness were identified as the main influencing features. A decision tree machine learning model was then established to draw the boundaries of good design space. This approach might be used for the design of brick-and-mortar composites with improved mechanical properties.

; ;
Award ID(s):
Publication Date:
Journal Name:
Communications Materials
Nature Publishing Group
Sponsoring Org:
National Science Foundation
More Like this
  1. In tribology, a considerable number of computational and experimental approaches to understand the interfacial characteristics of material surfaces in motion and tribological behaviors of materials have been considered to date. Despite being useful in providing important insights on the tribological properties of a system, at different length scales, a vast amount of data generated from these state-of-the-art techniques remains underutilized due to lack of analysis methods or limitations of existing analysis techniques. In principle, this data can be used to address intractable tribological problems including structure–property relationships in tribological systems and efficient lubricant design in a cost and time effective manner with the aid of machine learning. Specifically, data-driven machine learning methods have shown potential in unraveling complicated processes through the development of structure–property/functionality relationships based on the collected data. For example, neural networks are incredibly effective in modeling non-linear correlations and identifying primary hidden patterns associated with these phenomena. Here we present several exemplary studies that have demonstrated the proficiency of machine learning in understanding these critical factors. A successful implementation of neural networks, supervised, and stochastic learning approaches in identifying structure–property relationships have shed light on how machine learning may be used in certain tribological applications. Moreover, rangingmore »from the design of lubricants, composites, and experimental processes to studying fretting wear and frictional mechanism, machine learning has been embraced either independently or integrated with optimization algorithms by scientists to study tribology. Accordingly, this review aims at providing a perspective on the recent advances in the applications of machine learning in tribology. The review on referenced simulation approaches and subsequent applications of machine learning in experimental and computational tribology shall motivate researchers to introduce the revolutionary approach of machine learning in efficiently studying tribology.« less
  2. Abstract

    Artificial intelligence (AI) is rapidly emerging as a enabling tool for solving complex materials design problems. This paper aims to review recent advances in AI‐driven materials‐by‐design and their applications to energetic materials (EM). Trained with data from numerical simulations and/or physical experiments, AI models can assimilate trends and patterns within the design parameter space, identify optimal material designs (micro‐morphologies, combinations of materials in composites, etc.), and point to designs with superior/targeted property and performance metrics. We review approaches focusing on such capabilities with respect to the three main stages of materials‐by‐design, namely representation learning of microstructure morphology (i. e., shape descriptors), structure‐property‐performance (S−P−P) linkage estimation, and optimization/design exploration. We leave out “process” as much work remains to be done to establish the connectivity between process and structure. We provide a perspective view of these methods in terms of their potential, practicality, and efficacy towards the realization of materials‐by‐design. Specifically, methods in the literature are evaluated in terms of their capacity to learn from a small/limited number of data, computational complexity, generalizability/scalability to other material species and operating conditions, interpretability of the model predictions, and the burden of supervision/data annotation. Finally, we suggest a few promising future research directions for EMmore »materials‐by‐design, such as meta‐learning, active learning, Bayesian learning, and semi‐/weakly‐supervised learning, to bridge the gap between machine learning research and EM research.

    « less
  3. Abstract

    Nonlinear response history analysis (NLRHA) is generally considered to be a reliable and robust method to assess the seismic performance of buildings under strong ground motions. While NLRHA is fairly straightforward to evaluate individual structures for a select set of ground motions at a specific building site, it becomes less practical for performing large numbers of analyses to evaluate either (1) multiple models of alternative design realizations with a site‐specific set of ground motions, or (2) individual archetype building models at multiple sites with multiple sets of ground motions. In this regard, surrogate models offer an alternative to running repeated NLRHAs for variable design realizations or ground motions. In this paper, a recently developed surrogate modeling technique, called probabilistic learning on manifolds (PLoM), is presented to estimate structural seismic response. Essentially, the PLoM method provides an efficient stochastic model to develop mappings between random variables, which can then be used to efficiently estimate the structural responses for systems with variations in design/modeling parameters or ground motion characteristics. The PLoM algorithm is introduced and then used in two case studies of 12‐story buildings for estimating probability distributions of structural responses. The first example focuses on the mapping between variable designmore »parameters of a multidegree‐of‐freedom analysis model and its peak story drift and acceleration responses. The second example applies the PLoM technique to estimate structural responses for variations in site‐specific ground motion characteristics. In both examples, training data sets are generated for orthogonal input parameter grids, and test data sets are developed for input parameters with prescribed statistical distributions. Validation studies are performed to examine the accuracy and efficiency of the PLoM models. Overall, both examples show good agreement between the PLoM model estimates and verification data sets. Moreover, in contrast to other common surrogate modeling techniques, the PLoM model is able to preserve correlation structure between peak responses. Parametric studies are conducted to understand the influence of different PLoM tuning parameters on its prediction accuracy.

    « less
  4. The widespread growth of additive manufacturing, a field with a complex informatic “digital thread”, has helped fuel the creation of design repositories, where multiple users can upload distribute, and download a variety of candidate designs for a variety of situations. Additionally, advancements in additive manufacturing process development, design frameworks, and simulation are increasing what is possible to fabricate with AM, further growing the richness of such repositories. Machine learning offers new opportunities to combine these design repository components’ rich geometric data with their associated process and performance data to train predictive models capable of automatically assessing build metrics related to AM part manufacturability. Although design repositories that can be used to train these machine learning constructs are expanding, our understanding of what makes a particular design repository useful as a machine learning training dataset is minimal. In this study we use a metamodel to predict the extent to which individual design repositories can train accurate convolutional neural networks. To facilitate the creation and refinement of this metamodel, we constructed a large artificial design repository, and subsequently split it into sub-repositories. We then analyzed metadata regarding the size, complexity, and diversity of the sub-repositories for use as independent variables predicting accuracymore »and the required training computational effort for training convolutional neural networks. The networks each predict one of three additive manufacturing build metrics: (1) part mass, (2) support material mass, and (3) build time. Our results suggest that metamodels predicting the convolutional neural network coefficient of determination, as opposed to computational effort, were most accurate. Moreover, the size of a design repository, the average complexity of its constituent designs, and the average and spread of design spatial diversity were the best predictors of convolutional neural network accuracy.« less
  5. Largely due to superior properties compared to traditional materials, the use of polymer matrix composites (PMC) has been expanding in several industries such as aerospace, transportation, defense, and marine. However, the anisotropy and nonhomogeneity of these structures contribute to the difficulty in evaluating structural integrity; damage sites can occur at multiple locations and length scales and are hard to track over time. This can lead to unpredictable and expensive failure of a safety-critical structure, thus creating a need for non-destructive evaluation (NDE) techniques which can detect and quantify small-scale damage sites and track their progression. Our research group has improved upon classical microwave techniques to address these needs; utilizing a custom device to move a sample within a resonant cavity and create a spatial map of relative permittivity. We capitalize on the inevitable presence of moisture within the polymer network to detect damage. The differing migration inclinations of absorbed water molecules in a pristine versus a damaged composite alters the respective concentrations of the two chemical states of moisture. The greater concentration of free water molecules residing in the damage sites exhibit highly different relative permittivity when compared to the higher ratio of polymer-bound water molecules in the undamaged areas.more »Currently, the technique has shown the ability to detect impact damage across a range of damage levels and gravimetric moisture contents but is not able to specifically quantify damage extent with regards to impact energy level. The applicability of machine learning (ML) to composite materials is substantial, with uses in areas like manufacturing and design, prediction of structural properties, and damage detection. Using traditional NDE techniques in conjunction with supervised or unsupervised ML has been shown to improve the accuracy, reliability, or efficiency of the existing methods. In this work, we explore the use of a combined unsupervised/supervised ML approach to determine a damage boundary and quantification of single-impact specimens. Dry composite specimens were damaged via drop tower to induce one central impact site of 0, 2, or 3 Joules. After moisture exposure, Entrepreneur Dr, Raleigh, North Carolina 27695, U.S.A. 553 each specimen underwent dielectric mapping, and spatial permittivity maps were created at a variety of gravimetric moisture contents. An unsupervised K-means clustering algorithm was applied to the dielectric data to segment the levels of damage and define a damage boundary. Subsequently, supervised learning was used to quantify damage using features including but not limited to thickness, moisture content, permittivity values of each cluster, and average distance between points in each cluster. A regression model was trained on several samples with impact energy as the predicted variable. Evaluation was then performed based on prediction accuracy for samples in which the impact energies are not known to the model.

    « less