Artificial intelligence (AI) is rapidly emerging as a enabling tool for solving complex materials design problems. This paper aims to review recent advances in AI‐driven materials‐by‐design and their applications to energetic materials (EM). Trained with data from numerical simulations and/or physical experiments, AI models can assimilate trends and patterns within the design parameter space, identify optimal material designs (micro‐morphologies, combinations of materials in composites, etc.), and point to designs with superior/targeted property and performance metrics. We review approaches focusing on such capabilities with respect to the three main stages of materials‐by‐design, namely representation learning of microstructure morphology (i. e., shape descriptors), structure‐property‐performance (S−P−P) linkage estimation, and optimization/design exploration. We leave out “process” as much work remains to be done to establish the connectivity between process and structure. We provide a perspective view of these methods in terms of their potential, practicality, and efficacy towards the realization of materials‐by‐design. Specifically, methods in the literature are evaluated in terms of their capacity to learn from a small/limited number of data, computational complexity, generalizability/scalability to other material species and operating conditions, interpretability of the model predictions, and the burden of supervision/data annotation. Finally, we suggest a few promising future research directions for EM materials‐by‐design, such as meta‐learning, active learning, Bayesian learning, and semi‐/weakly‐supervised learning, to bridge the gap between machine learning research and EM research.
The brick-and-mortar structure inspired by nature, such as in nacre, is considered one of the most optimal designs for structural composites. Given the large number of design possibilities, extensive computational work is required to guide their manufacturing. Here, we propose a computational framework that combines statistical analysis and machine learning with finite element analysis to establish structure–property design strategies for brick-and-mortar composites. Approximately 20,000 models with different geometrical designs were categorized into good and bad based on their failure modes, with statistical analysis of the results used to find the importance of each feature. Aspect ratio of the bricks and horizontal mortar thickness were identified as the main influencing features. A decision tree machine learning model was then established to draw the boundaries of good design space. This approach might be used for the design of brick-and-mortar composites with improved mechanical properties.
more » « less- Award ID(s):
- 1727960
- PAR ID:
- 10154282
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Communications Materials
- Volume:
- 1
- Issue:
- 1
- ISSN:
- 2662-4443
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
In tribology, a considerable number of computational and experimental approaches to understand the interfacial characteristics of material surfaces in motion and tribological behaviors of materials have been considered to date. Despite being useful in providing important insights on the tribological properties of a system, at different length scales, a vast amount of data generated from these state-of-the-art techniques remains underutilized due to lack of analysis methods or limitations of existing analysis techniques. In principle, this data can be used to address intractable tribological problems including structure–property relationships in tribological systems and efficient lubricant design in a cost and time effective manner with the aid of machine learning. Specifically, data-driven machine learning methods have shown potential in unraveling complicated processes through the development of structure–property/functionality relationships based on the collected data. For example, neural networks are incredibly effective in modeling non-linear correlations and identifying primary hidden patterns associated with these phenomena. Here we present several exemplary studies that have demonstrated the proficiency of machine learning in understanding these critical factors. A successful implementation of neural networks, supervised, and stochastic learning approaches in identifying structure–property relationships have shed light on how machine learning may be used in certain tribological applications. Moreover, ranging from the design of lubricants, composites, and experimental processes to studying fretting wear and frictional mechanism, machine learning has been embraced either independently or integrated with optimization algorithms by scientists to study tribology. Accordingly, this review aims at providing a perspective on the recent advances in the applications of machine learning in tribology. The review on referenced simulation approaches and subsequent applications of machine learning in experimental and computational tribology shall motivate researchers to introduce the revolutionary approach of machine learning in efficiently studying tribology.more » « less
-
Jesus Flores Cerrillo, Praxair (Ed.)
Molecular design of redox-active materials with higher solubility and greater redox potential windows is instrumental in enhancing the performance of redox flow batteries Here we propose a computational procedure for a systematic evaluation of organic redox-active species by combining machine learning, quantum-mechanical, and classical density functional theory calculations. 1,517 small quinone molecules were generated from the building blocks of benzoquinone, naphthoquinone, and anthraquinone with different substituent groups. The physics-based methods were used to predict HOMO-LUMO gaps and solvation free energies that account for the redox potential differences and aqueous solubility, respectively. The high-throughput calculations were augmented with the quantitative structure-property relationship analyses and machine learning/graph network modeling to evaluate the materials’ overall behavior. The computational procedure was able to reproduce high-performance cathode electrolyte materials consistent with experimental observations and identify new electrolytes for RFBs by screening 100,000 di-substituted quinone molecules, the largest library of redox-active quinone molecules ever investigated. The efficient computational platform may facilitate a better understanding of the structure-function relationship of quinone molecules and advance the design and application of all-organic active materials for RFBs.
-
The widespread growth of additive manufacturing, a field with a complex informatic “digital thread”, has helped fuel the creation of design repositories, where multiple users can upload distribute, and download a variety of candidate designs for a variety of situations. Additionally, advancements in additive manufacturing process development, design frameworks, and simulation are increasing what is possible to fabricate with AM, further growing the richness of such repositories. Machine learning offers new opportunities to combine these design repository components’ rich geometric data with their associated process and performance data to train predictive models capable of automatically assessing build metrics related to AM part manufacturability. Although design repositories that can be used to train these machine learning constructs are expanding, our understanding of what makes a particular design repository useful as a machine learning training dataset is minimal. In this study we use a metamodel to predict the extent to which individual design repositories can train accurate convolutional neural networks. To facilitate the creation and refinement of this metamodel, we constructed a large artificial design repository, and subsequently split it into sub-repositories. We then analyzed metadata regarding the size, complexity, and diversity of the sub-repositories for use as independent variables predicting accuracy and the required training computational effort for training convolutional neural networks. The networks each predict one of three additive manufacturing build metrics: (1) part mass, (2) support material mass, and (3) build time. Our results suggest that metamodels predicting the convolutional neural network coefficient of determination, as opposed to computational effort, were most accurate. Moreover, the size of a design repository, the average complexity of its constituent designs, and the average and spread of design spatial diversity were the best predictors of convolutional neural network accuracy.more » « less
-
Abstract The ever increasing popularity of machine learning methods in virtually all areas of science, engineering and beyond is poised to put established statistical modeling approaches into question. Environmental statistics is no exception, as popular constructs such as neural networks and decision trees are now routinely used to provide forecasts of physical processes ranging from air pollution to meteorology. This presents both challenges and opportunities to the statistical community, which could contribute to the machine learning literature with a model‐based approach with formal uncertainty quantification. Should, however, classical statistical methodologies be discarded altogether in environmental statistics, and should our contribution be focused on formalizing machine learning constructs? This work aims at providing some answers to this thought‐provoking question with two time series case studies where selected models from both the statistical and machine learning literature are compared in terms of forecasting skills, uncertainty quantification and computational time. Relative merits of both class of approaches are discussed, and broad open questions are formulated as a baseline for a discussion on the topic.