Metal additive manufacturing (AM) holds immense potential for developing advanced structural alloys. However, the complex, heterogeneous nature of AM-produced materials presents significant challenges to traditional material characterization and optimization methods. This review explores the integration of artificial intelligence (AI) and machine learning (ML) with high-throughput material characterization protocols to rapidly establish the process–structure–property (PSP) relationships critically needed to dramatically accelerate the development of metal AM processes. Combinatorial high-throughput evaluations, including rapid material synthesis and nonstandard high-throughput testing protocols, such as spherical indentation and small punch tests, are discussed for their capability to rapidly assess mechanical properties and establish PSP linkages. Furthermore, the review examines the role of AI and ML in optimizing AM processes, particularly through Bayesian optimization, which offers new avenues for efficient exploration of high-dimensional design spaces. The review envisions a future where AI- and ML-driven, autonomous AM development cycles significantly enhance material and process optimization. 
                        more » 
                        « less   
                    
                            
                            Artificial Intelligence Approaches for Energetic Materials by Design: State of the Art, Challenges, and Future Directions
                        
                    
    
            Abstract Artificial intelligence (AI) is rapidly emerging as a enabling tool for solving complex materials design problems. This paper aims to review recent advances in AI‐driven materials‐by‐design and their applications to energetic materials (EM). Trained with data from numerical simulations and/or physical experiments, AI models can assimilate trends and patterns within the design parameter space, identify optimal material designs (micro‐morphologies, combinations of materials in composites, etc.), and point to designs with superior/targeted property and performance metrics. We review approaches focusing on such capabilities with respect to the three main stages of materials‐by‐design, namely representation learning of microstructure morphology (i. e., shape descriptors), structure‐property‐performance (S−P−P) linkage estimation, and optimization/design exploration. We leave out “process” as much work remains to be done to establish the connectivity between process and structure. We provide a perspective view of these methods in terms of their potential, practicality, and efficacy towards the realization of materials‐by‐design. Specifically, methods in the literature are evaluated in terms of their capacity to learn from a small/limited number of data, computational complexity, generalizability/scalability to other material species and operating conditions, interpretability of the model predictions, and the burden of supervision/data annotation. Finally, we suggest a few promising future research directions for EM materials‐by‐design, such as meta‐learning, active learning, Bayesian learning, and semi‐/weakly‐supervised learning, to bridge the gap between machine learning research and EM research. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2203580
- PAR ID:
- 10402839
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Propellants, Explosives, Pyrotechnics
- Volume:
- 48
- Issue:
- 4
- ISSN:
- 0721-3115
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Thanks to the rapid advances in artificial intelligence, AI for science (AI4Science) has emerged as one of the new promising research directions for modern science and engineering. In this review, we focus on recent efforts to develop knowledge-driven Bayesian learning and experimental design methods for accelerating the discovery of novel functional materials as well as enhancing the understanding of composition-process-structure-property relationships. We specifically discuss the challenges and opportunities in integrating prior scientific knowledge and physics principles with AI and machine learning (ML) models for accelerating materials and knowledge discovery. The current state-of-the-art methods in knowledge-based prior construction, model fusion, uncertainty quantification, optimal experimental design, and symbolic regression are detailed in the review, along with several detailed case studies and results in materials discovery.more » « less
- 
            Structural characterization of polymer materials is a major step in the process of creating materials' design-structural-property relationships. With growing interests in artificial intelligence (AI)-driven materials design and high-throughput synthesis and measurements, there is now a critical need for development of complementary data-driven approaches (e.g., machine learning models and workflows) to enable fast and automated interpretation of the characterization results. This review sets out with a description of the needs for machine learning specifically in the context of three commonly used structural characterization techniques for polymer materials: microscopy, scattering, and spectroscopy. Subsequently, a review of notable work done on development and application of machine learning models / workflows for these three types of measurements is provided. Definitions are provided for common machine learning terms to help readers who may be less familiar with the terminologies used in the context of machine learning. Finally, a perspective on the current challenges and potential opportunities to successfully integrate such data-driven methods in parallel/sequentially with the measurements is provided. The need for innovative interdisciplinary training programs for researchers regardless of their career path/employment in academia, national laboratories, or research and development in industry is highlighted as a strategy to overcome the challenge associated with the sharing and curation of data and unifying metadata.more » « less
- 
            Organic semiconductors (OSCs) offer the capacity for distinctive and finely tuned electronic, optical, thermal, and mechanical properties, making them of interest across a range of energy generation and storage, sensor, lighting, display, and electronics applications. The pathway from molecular building block design to material, however, is complicated by complex synthesis– processing–structure–property–function relationships that are inherent to OSCs. The adoption of artificial intelligence (AI) tools, including the subset of AI referred to as machine learning (ML), into the materials design and discovery pipeline offers significant potential to overcome the multifaceted roadblocks along this pathway. Here, we review recent advances in the application of AI/ML for OSCs, with a focus on the development and use of ML. We present a brief primer on ML models and then highlight efforts wherein ML is used to predict molecular and material properties and discover new molecular building blocks and OSCs.more » « less
- 
            Advancements in additive manufacturing (AM) technology and three-dimensional (3D) modeling software have enabled the fabrication of parts with combinations of properties that were impossible to achieve with traditional manufacturing techniques. Porous designs such as truss-based and sheet-based lattices have gained much attention in recent years due to their versatility. The multitude of lattice design possibilities, coupled with a growing list of available 3D printing materials, has provided a vast range of 3D printable structures that can be used to achieve desired performance. However, the process of computationally or experimentally evaluating many combinations of base material and lattice design for a given application is impractical. This research proposes a framework for quickly predicting key mechanical properties of 3D printed gyroid lattices using information about the base material and porosity of the structure. Experimental data was gathered to train a simple, interpretable, and accurate kernel ridge regression machine learning model. The performance of the model was then compared to numerical simulation data and demonstrated similar accuracy at a fraction of the computation time. Ultimately, the model development serves as an advancement in ML-driven mechanical property prediction that can be used to guide extension of current and future models.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
