skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Development of Biodegradable and Recyclable FRLM Composites Incorporating Cork Aggregates for Sustainable Construction Practices
Reducing energy consumption in the building sector has driven the search for more sustainable construction methods. This study explores the potential of cork-modified mortars reinforced with basalt fabric, focusing on optimizing both mechanical and hygroscopic properties. Six mortar mixtures were produced using a breathable structural mortar made from pure natural hydraulic lime, incorporating varying percentages (0–3%) of cork granules (Quercus suber) as lightweight aggregates. Micro-computed tomography was first used to assess the homogeneity of the mixtures, followed by flow tests to evaluate workability. The mixtures were then tested for water absorption, compressive strength, and adhesion to tuff and clay brick surfaces. Adhesion was measured through pull-off tests, to evaluate internal bonding strength. Additionally, this study examined the relationship between surface roughness and bond strength in FRLM composites, revealing that rougher surfaces significantly improved adhesion to clay and tuff bricks. These findings suggest that cork-reinforced mortars offer promising potential for sustainable construction, achieving improved hygroscopic performance, sufficient mechanical strength, internal bonding, and optimized surface adhesion.  more » « less
Award ID(s):
1916342
PAR ID:
10646699
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Materials
Volume:
17
Issue:
21
ISSN:
1996-1944
Page Range / eLocation ID:
5232
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Usually, energy and structural improvements for historic masonry buildings are addressed separately using distinct methods and protocols. This paper covers an integrated assessment of new composite materials to reduce the seismic vulnerability of historic masonry buildings while complying with sustainable conservation requirements, emissions’ reduction, and energy savings. Firstly, this study focused on selecting suitable thermal mortars that could serve as the base material for the innovative composite. Subsequently, the mechanical characteristics of these mortars were examined by subjecting them to compressive and three-point bending tests. Dynamic thermo-hygrometric simulations were conducted using commercially available software to check the energy performance of the composite material when used on walls of existing masonry buildings. The thermal mortar that exhibited the most favorable mechanical and thermal properties was subsequently reinforced with a basalt fabric. A composite sample was assembled and subjected to direct tensile testing to determine its stress–strain behavior. 
    more » « less
  2. The rising interest in 3D-printing of concrete structures for use in marine environments requires development of concrete mixtures with adequate mechanical and durability characteristics. The incorporation of alternative cementitious materials, combined with careful selection of printing parameters has emerged as an effective way of controlling not only the fresh properties and printability of mixtures, but also their mechanical and durability properties. This paper presents the results of various durability related tests performed on 3D-printed mortars, including density, porosity, rate of water absorption and resistance to chloride penetration. Results of these tests indicate that the performance of mortar elements 3D-printed using controlled overlap process was similar to the performance of conventionally cast mortar elements with the same composition. Moreover, the results of the chloride transport related tests obtained from all specimens evaluated during the course of the study indicate low chloride ion penetrability, thus re-affirming that combination of the proposed material and 3D-printing method of fabrication have a potential for producing structural elements for applications in marine environments. 
    more » « less
  3. Amziane, S.; Merta, I.; Page, J. (Ed.)
    Sustainable earthen building materials provide a pathway to mitigating the environmental impacts of the modern construction sector. While the application of these materials has been limited due to the inherent heterogeneity, erosivity, and weak mechanical properties of soil, the physical and thermal properties can be improved through the addition of ubiquitous, non-toxic, sustainable biopolymers. Yet, the fundamental understanding of the physiochemical bonding mechanisms between clays and biopolymers in this system is limited. In this work, a ‘micro to macro’ methodological approach was applied to investigate the bonding characteristics of common clays and clay-stabilizing biopolymers. At the micro-scale, fundamental interactions of clays (i.e., kaolinite, bentonite) with biopolymer additives (i.e., xanthan gum, guar gum, sodium alginate, microcrystalline cellulose) were assessed through mineral binding characterization techniques, including Fourier-transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). The findings were used to interpret unconfined compressive strength (UCS) tests results for macro-scale soil-biopolymer composites samples (1% biopolymer by soil mass). The results from this study illustrate the utility of understanding the mechanisms of clay-biopolymer interactions for improving the design of strong and durable earthen materials and structures. 
    more » « less
  4. Driven by the need for sustainable construction solutions, there is renewed interest in earth-based materials. Biopolymer stabilizers can enhance the rheological and structural properties of these materials to facilitate their use in 3D printing. This research examined the influence of sodium alginate on the stability, particle interaction, rheology, and 3D printability of kaolinite, a commonly found clay in soils deemed suitable for construction. Findings revealed that sodium alginate could boost electrostatic interactions to enhance the stability of kaolinite suspensions. This rise in repulsive potential energy could reduce storage modulus and yield stress by orders of magnitude. However, as the alginate content increased beyond its critical overlapping concentration (0.12 %–0.6 %), a reverse trend was observed, which was attributed to the formation of a three-dimensional polymer network. Furthermore, alginate addition shifted the “printability window” of kaolinite mixtures to higher solid contents, which has positive implications on the strength and shrinkage of the printable mixtures. 
    more » « less
  5. The mechanical properties of woven natural fiber reinforced polymers additively manufactured through Laminated Object Manufacturing (LOM) technology are investigated in this paper. The benefits of both the material and manufacturing process were combined into a sustainable practice, as a potential alternative to traditional synthetic composite materials made from nonrenewable crude oil with limited end-of-life alternatives. Woven jute fiber reinforcements are used to strengthen both synthetic and bio- thermoplastic polymers in creating highly biodegradable composite structures. Such materials, as one of the prospective alternatives for synthetic composites, can be used in many engineering fields such as automobile panels, construction materials, and commodity and recreational products including sports and musical instruments. A LOM 3D printer prototype was designed and built by the authors. All woven jute/polymer biocomposite test specimens made using the built prototype in this study had their mechanical (both tensile and flexural) properties assessed using ASTM test standards and then compared to similar values measured from pure polymer specimens. Improved mechanical characteristics were identified and analyzed. Finally, SEM imaging was performed to identify the polymer infusion and fibermatrix bonding conditions. 
    more » « less