skip to main content

Title: Continuous roll-to-roll patterning of three-dimensional periodic nanostructures
Abstract

In this work, we introduce a roll-to-roll system that can continuously print three-dimensional (3D) periodic nanostructures over large areas. This approach is based on Langmuir-Blodgett assembly of colloidal nanospheres, which diffract normal incident light to create a complex intensity pattern for near-field nanolithography. The geometry of the 3D nanostructure is defined by the Talbot effect and can be precisely designed by tuning the ratio of the nanosphere diameter to the exposure wavelength. Using this system, we have demonstrated patterning of 3D photonic crystals with a 500 nm period on a 50 × 200 mm2flexible substrate, with a system throughput of 3 mm/s. The patterning yield is quantitatively analyzed by an automated electron beam inspection method, demonstrating long-term repeatability of an up to 88% yield over a 4-month period. The inspection method can also be employed to examine pattern uniformity, achieving an average yield of up to 78.6% over full substrate areas. The proposed patterning method is highly versatile and scalable as a nanomanufacturing platform and can find application in nanophotonics, nanoarchitected materials, and multifunctional nanostructures.

Authors:
; ; ;
Publication Date:
NSF-PAR ID:
10154409
Journal Name:
Microsystems & Nanoengineering
Volume:
6
Issue:
1
ISSN:
2055-7434
Publisher:
Nature Publishing Group
Sponsoring Org:
National Science Foundation
More Like this
  1. Modern high-throughput nanopatterning techniques, such as nanoimprint lithography, make it possible to fabricate arrays of nanostructures (features with dimensions of 10’s to 100’s of nm) over large area substrates (cm2to m2scale) such as Si wafers, glass sheets, and flexible roll-to-roll webs. The ability to make such large-area nanostructure arrays (LNAs) has created an extensive design space, enabling a wide array of applications including optical devices, such as wire-grid polarizers, transparent conductors, color filters, and anti-reflection surfaces, and building blocks for electronic components, such as ultracapacitors, sensors, and memory storage architectures. However, existing metrology methods will have trouble scaling alongside fabrication methods. Scanning electron microscopy (SEM) and atomic force microscopy (AFM), for instance, have micron scale fields of view (FOV) that preclude comprehensive characterization of LNAs, which may be manufactured at m2per minute rates. Scatterometry approaches have larger FOVs (typically 100’s of µm to a few mm), but traditional scatterometry systems measure samples one point at a time, which also makes them too slow for large-scale LNA manufacturing. In this work, we demonstrate parallelization of the traditional spectroscopic scatterometry approach using hyperspectral imaging, increasing the throughput of the technique by a factor of 106-107. We demonstrate this approach by using hyperspectralmore »imaging and inverse modeling of reflectance spectra to derive 3-dimensional geometric data for Si nanopillar array structures over both mm and cm-scale with µm-scale spatial resolution. This work suggests that geometric measurements for a variety of LNAs can be performed with the potential for high speed over large areas which may be critical for future LNA manufacturing.

    « less
  2. Periodic diffractive elements known as metasurfaces constitute platform technology whereby exceptional optical properties, not attainable by conventional means, are attained. Generally, with increasing unit-cell complexity, there emerges a wider design space and bolstered functional capability. Advanced devices deploying elaborate unit cells are typically generated by electron-beam patterning which is a tedious, slow process not suitable for large surfaces and quick turnaround. Ameliorating this condition, we present a novel route towards facile fabrication of complex periodic metasurfaces based on sequential exposures by laser interference lithography. Our method is fast, cost-effective, and can be applied to large surface areas. It is enabled by precise control over periodicity and exposure energy. With it we have successfully patterned and fabricated one-dimensional (1D) and two-dimensional (2D) multipart unit cell devices as demonstrated here. Thus, zero-order transmission spectra of an etched four-part 1D grating device are simulated and measured for both transverse-electric (TE) and transverse-magnetic (TM) polarization states of normally incident light. We confirm non-resonant wideband antireflection (∼800 nm) for TM-polarized light and resonance response for TE-polarized light in the near-IR band spanning 1400-2200 nm in a ∼100 mm2device. Furthermore, it is shown that this method of fabrication can be implemented not only to pattern periodicmore »symmetric/asymmetric designs but also to realize non-periodic metasurfaces. The method will be useful in production of large-area photonic devices in the realm of nanophotonics and microphotonics.

    « less
  3. null (Ed.)
    Key properties of two-dimensional (2D) layered materials are highly strain tunable, arising from bond modulation and associated reconfiguration of the energy bands around the Fermi level. Approaches to locally controlling and patterning strain have included both active and passive elastic deformation via sustained loading and templating with nanostructures. Here, by float-capturing ultrathin flakes of single-crystal 2H-MoS2 on amorphous holey silicon nitride substrates, we find that highly symmetric, high-fidelity strain patterns are formed. The hexagonally arranged holes and surface topography combine to generate highly conformal flake-substrate coverage creating patterns that match optimal centroidal Voronoi tessellation in 2D Euclidean space. Using TEM imaging and diffraction, as well as AFM topographic mapping, we determine that the substrate-driven 3D geometry of the flakes over the holes consists of symmetric, out-of-plane bowl-like deformation of up to 35 nm, with in-plane, isotropic tensile strains of up to 1.8% (measured with both selected-area diffraction and AFM). Atomistic and image simulations accurately predict spontaneous formation of the strain patterns, with van der Waals forces and substrate topography as the input parameters. These results show that predictable patterns and 3D topography can be spontaneously induced in 2D materials captured on bare, holey substrates. The method also enables electron scatteringmore »studies of precisely aligned, substrate-free strained regions in transmission mode.« less
  4. Abstract
    Excessive phosphorus (P) applications to croplands can contribute to eutrophication of surface waters through surface runoff and subsurface (leaching) losses. We analyzed leaching losses of total dissolved P (TDP) from no-till corn, hybrid poplar (Populus nigra X P. maximowiczii), switchgrass (Panicum virgatum), miscanthus (Miscanthus giganteus), native grasses, and restored prairie, all planted in 2008 on former cropland in Michigan, USA. All crops except corn (13 kg P ha−1 year−1) were grown without P fertilization. Biomass was harvested at the end of each growing season except for poplar. Soil water at 1.2 m depth was sampled weekly to biweekly for TDP determination during March–November 2009–2016 using tension lysimeters. Soil test P (0–25 cm depth) was measured every autumn. Soil water TDP concentrations were usually below levels where eutrophication of surface waters is frequently observed (> 0.02 mg L−1) but often higher than in deep groundwater or nearby streams and lakes. Rates of P leaching, estimated from measured concentrations and modeled drainage, did not differ statistically among cropping systems across years; 7-year cropping system means ranged from 0.035 to 0.072 kg P ha−1 year−1 with large interannual variation. Leached P was positively related to STP, which decreased over the 7 years in all systems. These results indicate that both P-fertilized and unfertilized cropping systems mayMore>>
  5. Abstract

    Slow-moving landslides move downslope at velocities that range from mm year−1to m year−1. Such deformations can be measured using satellite-based synthetic aperture radar interferometry (InSAR). We developed a new method to systematically detect and quantify accelerations and decelerations of slowly deforming areas using InSAR displacement time series. The displacement time series are filtered using an outlier detector and subsequently piecewise linear functions are fitted to identify changes in the displacement rate (i.e., accelerations or decelerations). Grouped accelerations and decelerations are inventoried as indicators of potential unstable areas. We tested and refined our new method using a high-quality dataset from the Mud Creek landslide, CA, USA. Our method detects accelerations and decelerations that coincide with those previously detected by manual examination. Second, we tested our method in the region around the Mazar dam and reservoir in Southeast Ecuador, where the time series data were of considerably lower quality. We detected accelerations and decelerations occurring during the entire study period near and upslope of the reservoir. Application of our method results in a wealth of information on the dynamics of the surface displacement of hillslopes and provides an objective way to identify changes in displacement rates. The displacement rates, their spatialmore »variation, and the timing of accelerations and decelerations can be used to study the physical behavior of a slow-moving slope or for regional hazard assessment by linking the timing of changes in displacement rates to landslide causal and triggering factors.

    « less