skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Limit theorems for process-level Betti numbers for sparse and critical regimes
Abstract The objective of this study is to examine the asymptotic behavior of Betti numbers of Čech complexes treated as stochastic processes and formed from random points in the d -dimensional Euclidean space $${\mathbb{R}}^d$$ . We consider the case where the points of the Čech complex are generated by a Poisson process with intensity nf for a probability density f . We look at the cases where the behavior of the connectivity radius of the Čech complex causes simplices of dimension greater than $k+1$ to vanish in probability, the so-called sparse regime, as well when the connectivity radius is of the order of $$n^{-1/d}$$ , the critical regime. We establish limit theorems in the aforementioned regimes: central limit theorems for the sparse and critical regimes, and a Poisson limit theorem for the sparse regime. When the connectivity radius of the Čech complex is $$o(n^{-1/d})$$ , i.e. the sparse regime, we can decompose the limiting processes into a time-changed Brownian motion or a time-changed homogeneous Poisson process respectively. In the critical regime, the limiting process is a centered Gaussian process but has a much more complicated representation, because the Čech complex becomes highly connected with many topological holes of any dimension.  more » « less
Award ID(s):
1811428
PAR ID:
10154732
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Advances in Applied Probability
Volume:
52
Issue:
1
ISSN:
0001-8678
Page Range / eLocation ID:
1 to 31
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract This study presents functional limit theorems for the Euler characteristic of Vietoris–Rips complexes. The points are drawn from a nonhomogeneous Poisson process on $$\mathbb{R}^d$$ , and the connectivity radius governing the formation of simplices is taken as a function of the time parameter t , which allows us to treat the Euler characteristic as a stochastic process. The setting in which this takes place is that of the critical regime, in which the simplicial complexes are highly connected and have nontrivial topology. We establish two ‘functional-level’ limit theorems, a strong law of large numbers and a central limit theorem, for the appropriately normalized Euler characteristic process. 
    more » « less
  2. We investigate multivariate bootstrap procedures for general stabilizing statistics, with specific application to topological data analysis. The work relates to other general results in the area of stabilizing statistics, including central limit theorems for geometric and topological functionals of Poisson and binomial processes in the critical regime, where limit theorems prove difficult to use in practice, motivating the use of a bootstrap approach. A smoothed bootstrap procedure is shown to give consistent estimation in these settings. Specific statistics considered include the persistent Betti numbers of Čech and Vietoris–Rips complexes over point sets in Rd, along with Euler characteristics, and the total edge length of the k-nearest neighbor graph. Special emphasis is given to weakening the necessary conditions needed to establish bootstrap consistency. In particular, the assumption of a continuous underlying density is not required. Numerical studies illustrate the performance of the proposed method. 
    more » « less
  3. Abstract Persistent Betti numbers are a major tool in persistent homology, a subfield of topological data analysis. Many tools in persistent homology rely on the properties of persistent Betti numbers considered as a two-dimensional stochastic process$$ (r,s) \mapsto n^{-1/2} (\beta^{r,s}_q ( \mathcal{K}(n^{1/d} \mathcal{X}_n))-\mathbb{E}[\beta^{r,s}_q ( \mathcal{K}( n^{1/d} \mathcal{X}_n))])$$. So far, pointwise limit theorems have been established in various settings. In particular, the pointwise asymptotic normality of (persistent) Betti numbers has been established for stationary Poisson processes and binomial processes with constant intensity function in the so-called critical (or thermodynamic) regime; see Yogeshwaranet al.(Prob. Theory Relat. Fields167, 2017) and Hiraokaet al.(Ann. Appl. Prob.28, 2018). In this contribution, we derive a strong stabilization property (in the spirit of Penrose and Yukich,Ann. Appl. Prob.11, 2001) of persistent Betti numbers, and we generalize the existing results on their asymptotic normality to the multivariate case and to a broader class of underlying Poisson and binomial processes. Most importantly, we show that multivariate asymptotic normality holds for all pairs (r,s),$$0\le r\le s<\infty$$, and that it is not affected by percolation effects in the underlying random geometric graph. 
    more » « less
  4. Abstract Consider a set of n vertices, where each vertex has a location in $$\mathbb{R}^d$$ that is sampled uniformly from the unit cube in $$\mathbb{R}^d$$ , and a weight associated to it. Construct a random graph by placing edges independently for each vertex pair with a probability that is a function of the distance between the locations and the vertex weights. Under appropriate integrability assumptions on the edge probabilities that imply sparseness of the model, after appropriately blowing up the locations, we prove that the local limit of this random graph sequence is the (countably) infinite random graph on $$\mathbb{R}^d$$ with vertex locations given by a homogeneous Poisson point process, having weights which are independent and identically distributed copies of limiting vertex weights. Our set-up covers many sparse geometric random graph models from the literature, including geometric inhomogeneous random graphs (GIRGs), hyperbolic random graphs, continuum scale-free percolation, and weight-dependent random connection models. We prove that the limiting degree distribution is mixed Poisson and the typical degree sequence is uniformly integrable, and we obtain convergence results on various measures of clustering in our graphs as a consequence of local convergence. Finally, as a byproduct of our argument, we prove a doubly logarithmic lower bound on typical distances in this general setting. 
    more » « less
  5. null (Ed.)
    Abstract We investigate the topologies of random geometric complexes built over random points sampled on Riemannian manifolds in the so-called “thermodynamic” regime. We prove the existence of universal limit laws for the topologies; namely, the random normalized counting measure of connected components (counted according to homotopy type) is shown to converge in probability to a deterministic probability measure. Moreover, we show that the support of the deterministic limiting measure equals the set of all homotopy types for Euclidean connected geometric complexes of the same dimension as the manifold. 
    more » « less