Abstract Neuromuscular impairment requires adherence to a rehabilitation regimen for maximum recovery of motor function. Consumer-grade game controllers have emerged as a viable means to relay supervised physical therapy to patients’ homes, thereby increasing their accessibility to healthcare. These controllers allow patients to perform exercise frequently and improve their rehabilitation outcomes. However, the non-universal design of game controllers targets healthy people and does not always accommodate people with disability. Consequently, many patients experience considerable difficulty assuming certain hand postures and performing the prescribed exercise correctly. Here, we explore the feasibility of improving rehabilitation outcomes through a 3D printing approach that enhances off-the-shelf game controllers in home therapy. Specifically, a custom attachment was 3D printed for a commercial haptic device that mediates fine motor rehabilitation. In an experimental study, 25 healthy subjects performed a navigation task, with the retrofit attachment and without it, while simulating disability of the upper limb. When using the attachment, subjects extended their wrist range of motion, yet maintained their level of compensation. The subjects also showed higher motivation to repeat the exercise with the enhanced device. The results bring forward evidence for the potential of this approach in transforming game controllers toward targeted interventions in home therapy.
more »
« less
A Smartwatch-Based Service Towards Home Exercise Therapy for Patients with Peripheral Arterial Disease
Utilizing a consumer-grade smartwatch in conjunction with a prescribed exercise therapy plan can help to reduce the patient-level entry barriers into programs designed for patients with peripheral arterial disease, which affects millions of people worldwide. Currently, the alternative to this physical therapy plan is surgical therapy which costs between 3and5 billion annually. This paper presents the development and testing of WalkCoach app, a smart service system integrating a consumer-grade smartwatch (Polar M600) in the monitoring of supervised walking exercises. By monitoring a participant's baseline activity and improvements with time, it will be possible to provide personalized exercise prescriptions that can be easily modified or personalized to adjust and optimize for improved walking ability as the therapy progresses. This paper demonstrates the accuracy of the smartwatch-based WalkCoach app in a pilot cohort study of 10 healthy older adults (>65 yrs) who were recruited to perform a 400m overground walking task. Results are promising and show that the consumer-grade smartwatch accurately measures steps (step count = 637) compared to a video/manual step count (650 steps; Pearson's r = 0.96, P <;0.001). In the future, WalkCoach will be improved to produce granular analytics on a patient's compliance and performance to the supervised walking exercises.
more »
« less
- Award ID(s):
- 1652538
- PAR ID:
- 10154743
- Date Published:
- Journal Name:
- 2019 IEEE International Conference on Smart Computing (SMARTCOMP)
- Page Range / eLocation ID:
- 162 to 166
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
People with visual impairments (PVIs) are less likely to participate in physical activity than their sighted peers. One barrier is the lack of accessible group-based aerobic exercise classes, often due to instructors not giving accessible verbal instructions. While there is research in exercise tracking, these tools often require vision or familiarity with the exercise. There are accessible solutions that give personalized verbal feedback in slower-paced exercises, not generalizing to aerobics. In response, we have developed an algorithm that detects shoeprints on a sensor mat using computer vision and a CNN. We can infer whether a person is following along with a step aerobics workout and are designing reactive verbal feedback to guide the person to rejoin the class. Future work will include finishing development and conducting a user study to assess the effectiveness of the reactive verbal feedback.more » « less
-
Abstract An active lifestyle can mitigate physical decline and cognitive impairment in older adults. Regular walking exercises for older individuals result in enhanced balance and reduced risk of falling. In this article, we present a study on gait monitoring for older adults during walking using an integrated system encompassing an assistive robot and wearable sensors. The system fuses data from the robot onboard Red Green Blue plus Depth (RGB-D) sensor with inertial and pressure sensors embedded in shoe insoles, and estimates spatiotemporal gait parameters and dynamic margin of stability in real-time. Data collected with 24 participants at a community center reveal associations between gait parameters, physical performance (evaluated with the Short Physical Performance Battery), and cognitive ability (measured with the Montreal Cognitive Assessment). The results validate the feasibility of using such a portable system in out-of-the-lab conditions and will be helpful for designing future technology-enhanced exercise interventions to improve balance, mobility, and strength and potentially reduce falls in older adults.more » « less
-
Quantitative assessment of movement using motion capture provides insights on mobility which are not evident from clinical evaluation. Here, in older individuals that were healthy or had suffered a stroke, we aimed to investigate their balance in terms of changes in body kinematics and muscle activity. Our research question involved determining the effects on post- compared to pre-sensorimotor training exercises on maintaining or improving balance. Our research hypothesis was that training would improve the gait and balance by increasing joint angles and extensor muscle activities in lower extremities and spatiotemporal measures of stroke and elderly people. This manuscript describes a motion capture-based evaluation protocol to assess joint angles and spatiotemporal parameters (cadence, step length and walking speed), as well as major extensor and flexor muscle activities. We also conducted a case study on a healthy older participant (male, age, 65) and an older participant with chronic stroke (female, age, 55). Both participants performed a walking task along a path with a rectangular shape which included tandem walking forward, right side stepping, tandem walking backward, left side stepping to the starting location. For the stroke participant, the training improved the task completion time by 19 s. Her impaired left leg had improved step length (by 0.197 m) and cadence (by 10 steps/min) when walking forward, and cadence (by 12 steps/min) when walking backward. The non-impaired right leg improved cadence when walking forward (by 15 steps/min) and backward (by 27 steps/min). The joint range of motion (ROM) did not change in most cases. However, the ROM of the hip joint increased significantly by 5.8 degrees (p = 0.019) on the left leg side whereas the ROMs of hip joint and knee joint increased significantly by 4.1 degrees (p = 0.046) and 8.1 degrees (p = 0.007) on the right leg side during backward walking. For the healthy participant, the significant changes were only found in his right knee joint ROM having increased by 4.2 degrees (p = 0.031) and in his left ankle joint ROM having increased by 5.5 degrees (p = 0.006) during the left side stepping.more » « less
-
Enrico Meli (Ed.)This research presents an Assist-as-Needed (AAN) Algorithm for controlling a bio-inspired exoskeleton, specifically designed to aid in elbow-rehabilitation exercises. The algorithm is based on a Force Sensitive Resistor (FSR) Sensor and utilizes machine-learning algorithms that are personalized to each patient, allowing them to complete the exercise by themselves whenever possible. The system was tested on five participants, including four with Spinal Cord Injury and one with Duchenne Muscular Dystrophy, with an accuracy of 91.22%. In addition to monitoring the elbow range of motion, the system uses Electromyography signals from the biceps to provide patients with real-time feedback on their progress, which can serve as a motivator to complete the therapy sessions. The study has two main contributions: (1) providing patients with real-time, visual feedback on their progress by combining range of motion and FSR data to quantify disability levels, and (2) developing an assist-as-needed algorithm for rehabilitative support of robotic/exoskeleton devices.more » « less
An official website of the United States government

