The product selectivity of many heterogeneous electrocatalytic processes is profoundly affected by the liquid side of the electrocatalytic interface. The electrocatalytic reduction of CO to hydrocarbons on Cu electrodes is a prototypical example of such a process. However, probing the interactions of surface-bound intermediates with their liquid reaction environment poses a formidable experimental challenge. As a result, the molecular origins of the dependence of the product selectivity on the characteristics of the electrolyte are still poorly understood. Herein, we examined the chemical and electrostatic interactions of surface-adsorbed CO with its liquid reaction environment. Using a series of quaternary alkyl ammonium cations (
Assessment of the global budget of the greenhouse gas nitrous oxide (
- Award ID(s):
- 1847687
- PAR ID:
- 10154824
- Publisher / Repository:
- Proceedings of the National Academy of Sciences
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 117
- Issue:
- 22
- ISSN:
- 0027-8424
- Page Range / eLocation ID:
- p. 11954-11960
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
, , , and ), we systematically tuned the properties of this environment. With differential electrochemical mass spectrometry (DEMS), we show that ethylene is produced in the presence of and cations, whereas this product is not synthesized in - and -containing electrolytes. Surface-enhanced infrared absorption spectroscopy (SEIRAS) reveals that the cations do not block CO adsorption sites and that the cation-dependent interfacial electric field is too small to account for the observed changes in selectivity. However, SEIRAS shows that an intermolecular interaction between surface-adsorbed CO and interfacial water is disrupted in the presence of the two larger cations. This observation suggests that this interaction promotes the hydrogenation of surface-bound CO to ethylene. Our study provides a critical molecular-level insight into how interactions of surface species with the liquid reaction environment control the selectivity of this complex electrocatalytic process. -
Abstract Polyatomic molecules have been identified as sensitive probes of charge-parity violating and parity violating physics beyond the Standard Model (BSM). For example, many linear triatomic molecules are both laser-coolable and have parity doublets in the ground electronic
state arising from the bending vibration, both features that can greatly aid BSM searches. Understanding the state is a crucial prerequisite to precision measurements with linear polyatomic molecules. Here, we characterize the fundamental bending vibration of YbOH using high-resolution optical spectroscopy on the nominally forbidden transition at 588 nm. We assign 39 transitions originating from the lowest rotational levels of the state, and accurately model the state’s structure with an effective Hamiltonian using best-fit parameters. Additionally, we perform Stark and Zeeman spectroscopy on the state and fit the molecule-frame dipole moment toD and the effective electrong -factor to . Further, we use an empirical model to explain observed anomalous line intensities in terms of interference from spin–orbit and vibronic perturbations in the excited state. Our work is an essential step toward searches for BSM physics in YbOH and other linear polyatomic molecules. -
Sub-Neptunes are common among the discovered exoplanets. However, lack of knowledge on the state of matter in
O-rich setting at high pressures and temperatures ( ) places important limitations on our understanding of this planet type. We have conducted experiments for reactions between and O as archetypal materials for rock and ice, respectively, at high . We found anomalously expanded volumes of dense silica (up to 4%) recovered from hydrothermal synthesis above ∼24 GPa where the -type (Ct) structure appears at lower pressures than in the anhydrous system. Infrared spectroscopy identified strong OH modes from the dense silica samples. Both previous experiments and our density functional theory calculations support up to 0.48 hydrogen atoms per formula unit of ( ) . At pressures above 60 GPa, O further changes the structural behavior of silica, stabilizing a niccolite-type structure, which is unquenchable. From unit-cell volume and phase equilibrium considerations, we infer that the niccolite-type phase may contain H with an amount at least comparable with or higher than that of the Ct phase. Our results suggest that the phases containing both hydrogen and lithophile elements could be the dominant materials in the interiors of water-rich planets. Even for fully layered cases, the large mutual solubility could make the boundary between rock and ice layers fuzzy. Therefore, the physical properties of the new phases that we report here would be important for understanding dynamics, geochemical cycle, and dynamo generation in water-rich planets. -
Abstract M dwarfs are common host stars to exoplanets but often lack atmospheric abundance measurements. Late-M dwarfs are also good analogs to the youngest substellar companions, which share similar
T eff∼ 2300–2800 K. We present atmospheric analyses for the M7.5 companion HIP 55507 B and its K6V primary star with Keck/KPIC high-resolution (R ∼ 35,000)K -band spectroscopy. First, by including KPIC relative radial velocities between the primary and secondary in the orbit fit, we improve the dynamical mass precision by 60% and find , putting HIP 55507 B above the stellar–substellar boundary. We also find that HIP 55507 B orbits its K6V primary star with au ande = 0.40 ± 0.04. From atmospheric retrievals of HIP 55507 B, we measure [C/H] = 0.24 ± 0.13, [O/H] = 0.15 ± 0.13, and C/O = 0.67 ± 0.04. Moreover, we strongly detect13CO (7.8σ significance) and tentatively detect (3.7σ significance) in the companion’s atmosphere and measure and after accounting for systematic errors. From a simplified retrieval analysis of HIP 55507 A, we measure and for the primary star. These results demonstrate that HIP 55507 A and B have consistent12C/13C and16O/18O to the <1σ level, as expected for a chemically homogeneous binary system. Given the similar flux ratios and separations between HIP 55507 AB and systems with young substellar companions, our results open the door to systematically measuring13CO and abundances in the atmospheres of substellar or even planetary-mass companions with similar spectral types. -
Abstract One of the cornerstone effects in spintronics is spin pumping by dynamical magnetization that is steadily precessing (around, for example, the
z -axis) with frequencyω 0due to absorption of low-power microwaves of frequencyω 0under the resonance conditions and in the absence of any applied bias voltage. The two-decades-old ‘standard model’ of this effect, based on the scattering theory of adiabatic quantum pumping, predicts that component of spin current vector is time-independent while and oscillate harmonically in time with a single frequencyω 0whereas pumped charge current is zero in the same adiabatic limit. Here we employ more general approaches than the ‘standard model’, namely the time-dependent nonequilibrium Green’s function (NEGF) and the Floquet NEGF, to predict unforeseen features of spin pumping: namely precessing localized magnetic moments within a ferromagnetic metal (FM) or antiferromagnetic metal (AFM), whose conduction electrons are exposed to spin–orbit coupling (SOC) of either intrinsic or proximity origin, will pump both spin and chargeI (t ) currents. All four of these functions harmonically oscillate in time at both even and odd integer multiples of the driving frequencyω 0. The cutoff order of such high harmonics increases with SOC strength, reaching in the one-dimensional FM or AFM models chosen for demonstration. A higher cutoff can be achieved in realistic two-dimensional (2D) FM models defined on a honeycomb lattice, and we provide a prescription of how to realize them using 2D magnets and their heterostructures.