skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Basis Theorem for the Degenerate Affine Oriented Brauer–Clifford Supercategory
Abstract We introduce the oriented Brauer–Clifford and degenerate affine oriented Brauer–Clifford supercategories. These are diagrammatically defined monoidal supercategories that provide combinatorial models for certain natural monoidal supercategories of supermodules and endosuperfunctors, respectively, for the Lie superalgebras of type Q. Our main results are basis theorems for these diagram supercategories. We also discuss connections and applications to the representation theory of the Lie superalgebra of type Q.  more » « less
Award ID(s):
1700905
PAR ID:
10154987
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Canadian Journal of Mathematics
Volume:
71
Issue:
5
ISSN:
0008-414X
Page Range / eLocation ID:
1061 to 1101
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Let X be a simply connected closed oriented manifold of rationally elliptic homotopy type. We prove that the string topology bracket on the $S^1$ -equivariant homology $$ {\overline {\text {H}}}_\ast ^{S^1}({\mathcal {L}} X,{\mathbb {Q}}) $$ of the free loop space of X preserves the Hodge decomposition of $$ {\overline {\text {H}}}_\ast ^{S^1}({\mathcal {L}} X,{\mathbb {Q}}) $$ , making it a bigraded Lie algebra. We deduce this result from a general theorem on derived Poisson structures on the universal enveloping algebras of homologically nilpotent finite-dimensional DG Lie algebras. Our theorem settles a conjecture of [7]. 
    more » « less
  2. The linear decomposition attack provides a serious obstacle to direct applications of noncommutative groups and monoids (or semigroups) in cryptography. To overcome this issue we propose to look at monoids with only big representations, in the sense made precise in the paper, and undertake a systematic study of such monoids. One of our main tools is Green’s theory of cells (Green’s relations). A large supply of monoids is delivered by monoidal categories. We consider simple examples of monoidal categories of diagrammatic origin, including the Temperley–Lieb, the Brauer and partition categories, and discuss lower bounds for their representations. 
    more » « less
  3. We introduce a theory of stratifications of noncommutative stacks (i.e., presentable stable ∞<#comment/> \infty -categories), and we prove a reconstruction theorem that expresses them in terms of their strata and gluing data. This reconstruction theorem is compatible with symmetric monoidal structures, and with more general operadic structures such as E n \mathbb {E}_n -monoidal structures. We also provide a suite of fundamental operations for constructing new stratifications from old ones: restriction, pullback, quotient, pushforward, and refinement. Moreover, we establish a dual form of reconstruction; this is closely related to Verdier duality and reflection functors, and gives a categorification of Möbius inversion. Our main application is to equivariant stable homotopy theory: for any compact Lie group G G , we give a symmetric monoidal stratification of genuine G G -spectra. In the case that G G is finite, this expresses genuine G G -spectra in terms of their geometric fixedpoints (as homotopy-equivariant spectra) and gluing data therebetween (which are given by proper Tate constructions). We also prove an adelic reconstruction theorem; this applies not just to ordinary schemes but in the more general context of tensor-triangular geometry, where we obtain a symmetric monoidal stratification over the Balmer spectrum. We discuss the particular example of chromatic homotopy theory. 
    more » « less
  4. For a given weight of a complex simple Lie algebra, the q-analog of Kostant’s partition function is a polynomial valued function in the variable q, where the coefficient of qk is the number of ways the weight can be written as a nonnegative integral sum of exactly k positive roots. In this paper we determine generating functions for the q-analog of Kostant’s partition function when the weight in question is the highest root of the classical Lie algebras of types B, C, and D, and the exceptional Lie algebras of type G2, F4, E6, E7, and E8. 
    more » « less
  5. Abstract We prove character ratio bounds for finite exceptional groups $G(q)$ of Lie type. These take the form $$\dfrac{|\chi (g)|}{\chi (1)} \le \dfrac{c}{q^k}$$ for all nontrivial irreducible characters $$\chi$$ and nonidentity elements $$g$$, where $$c$$ is an absolute constant, and $$k$$ is a positive integer. Applications are given to bounding mixing times for random walks on these groups and also diameters of their McKay graphs. 
    more » « less