skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Salinity stress increases the severity of ranavirus epidemics in amphibian populations
The stress-induced susceptibility hypothesis, which predicts chronic stress weakens immune defences, was proposed to explain increasing infectious disease-related mass mortality and population declines. Previous work characterized wetland salinization as a chronic stressor to larval amphibian populations. Thus, we combined field observations with experimental exposures quantifying epidemiological parameters to test the role of salinity stress in the occurrence of ranavirus-associated mass mortality events. Despite ubiquitous pathogen presence (94%), populations exposed to salt runoff had slightly more frequent ranavirus related mass mortality events, more lethal infections, and 117-times greater pathogen environmental DNA. Experimental exposure to chronic elevated salinity (0.8–1.6 g l −1 Cl − ) reduced tolerance to infection, causing greater mortality at lower doses. We found a strong negative relationship between splenocyte proliferation and corticosterone in ranavirus-infected larvae at a moderate elevation of salinity, supporting glucocorticoid-medicated immunosuppression, but not at high salinity. Salinity alone reduced proliferation further at similar corticosterone levels and infection intensities. Finally, larvae raised in elevated salinity had 10 times more intense infections and shed five times as much virus with similar viral decay rates, suggesting increased transmission. Our findings illustrate how a small change in habitat quality leads to more lethal infections and potentially greater transmission efficiency, increasing the severity of ranavirus epidemics.  more » « less
Award ID(s):
1754474
PAR ID:
10155252
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the Royal Society B: Biological Sciences
Volume:
287
Issue:
1926
ISSN:
0962-8452
Page Range / eLocation ID:
20200062
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Greater knowledge of how host–microbiome interactions vary with anthropogenic environmental change and influence pathogenic infections is needed to better understand stress-mediated disease outcomes. We investigated how increasing salinization in freshwaters (e.g. due to road de-icing salt runoff) and associated increases in growth of nutritional algae influenced gut bacterial assembly, host physiology and responses to ranavirus exposure in larval wood frogs (Rana sylvatica). Elevating salinity and supplementing a basic larval diet with algae increased larval growth and also increased ranavirus loads. However, larvae given algae did not exhibit elevated kidney corticosterone levels, accelerated development or weight loss post-infection, whereas larvae fed a basic diet did. Thus, algal supplementation reversed a potentially maladaptive stress response to infection observed in prior studies in this system. Algae supplementation also reduced gut bacterial diversity. Notably, we observed higher relative abundances of Firmicutes in treatments with algae—a pattern consistent with increased growth and fat deposition in mammals—that may contribute to the diminished stress responses to infection via regulation of host metabolism and endocrine function. Our study informs mechanistic hypotheses about the role of microbiome mediation of host responses to infection that can be tested in future experiments in this host–pathogen system 
    more » « less
  2. Ranaviruses are emerging pathogens that have caused mortality events in amphibians worldwide. Despite the negative effects of ranaviruses on amphibian populations, monitoring efforts are still lacking in many areas, including in the Prairie Pothole Region (PPR) of North America. Some PPR wetlands in Montana and North Dakota (USA) have been contaminated by energy-related saline wastewaters, and increased salinity has been linked to greater severity of ranavirus infections. In 2017, we tested tissues from larvae collected at 7 wetlands that ranged in salinity from 26 to 4103 mg Cl l-1. In 2019, we used environmental DNA (eDNA) to test for ranaviruses in 30 wetlands that ranged in salinity from 26 to 11754 mg Cl l-1. A previous study (2013-2014) found that ranavirus-infected amphibians were common across North Dakota, including in some wetlands near our study area. Overall, only 1 larva tested positive for ranavirus infection, and we did not detect ranavirus in any eDNA samples. There are several potential reasons why we found so little evidence of ranaviruses, including low larval sample sizes, mismatch between sampling and disease occurrence, larger pore size of our eDNA filters, temporal variation in outbreaks, low host abundance, or low occurrence or prevalence of ranaviruses in the wetlands we sampled. We suggest future monitoring efforts be conducted to better understand the occurrence and prevalence of ranaviruses within the PPR. 
    more » « less
  3. Buchler, Nicolas E (Ed.)
    ABSTRACT Infectious diseases remain a major cause of global mortality, yet basic questions concerning the relationship between within-host processes governing pathogen burden (pathogen replication, immune responses) and population-scale (epidemiological) patterns of mortality remain obscure. We use a structured literature review to leverage the extensive biomedical data generated by controlled host infections to address the epidemiological question of whether infection-induced mortality is constant, accelerating, or follows some other pattern of change and to infer the within-host mechanistic basis of this pattern. We show that across diverse lethal infection models, the risk of death increases approximately exponentially in time since infection, in a manner phenomenologically similar to the dynamics of all-cause death. We further show that this pattern of accelerating risk is consistent with multiple alternate mechanisms of pathogen growth and host-pathogen interaction, underlining the limitations of current experimental approaches to connect within-host processes to epidemiological patterns. We review critical experimental questions that our work highlights, requiring additional non-invasive data on pathogen burden throughout the course of infection.IMPORTANCEHere, we ask a simple question: what are the dynamics of pathogen-induced death? Death is a central phenotype in both biomedical and epidemiological infectious disease biology, yet very little work has attempted to link the biomedical focus on pathogen dynamics within a host and the epidemiological focus on populations of infected hosts. To systematically characterize the dynamics of death in controlled animal infections, we analyzed 209 data sets spanning diverse lethal animal infection models. Across experimental models, we find robust support for an accelerating risk of death since the time of infection, contrasting with conventional epidemiological models that assume a constant elevated risk of death. Using math models, we show that multiple processes of growth and virulence are consistent with accelerating risk of death, and we end with a discussion of critical experiments to resolve how within-host biomedical processes map onto epidemiological patterns of disease. 
    more » « less
  4. Jung, Jae U. (Ed.)
    ABSTRACT Ranaviruses such as frog virus 3 (FV3) are large double-stranded DNA (dsDNA) viruses causing emerging infectious diseases leading to extensive morbidity and mortality of amphibians and other ectothermic vertebrates worldwide. Among the hosts of FV3, some are highly susceptible, whereas others are resistant and asymptomatic carriers that can take part in disseminating the infectious virus. To date, the mechanisms involved in the processes of FV3 viral persistence associated with subclinical infection transitioning to lethal outbreaks remain unknown. Investigation in Xenopus laevis has revealed that in asymptomatic FV3 carrier animals, inflammation induced by heat-killed (HK) Escherichia coli stimulation can provoke the relapse of active infection. Since Toll-like receptors (TLRs) are critical for recognizing microbial molecular patterns, we investigated their possible involvement in inflammation-induced FV3 reactivation. Among the 10 different TLRs screened for changes in expression levels following FV3 infection and HK E. coli stimulation, only TLR5 and TLR22, both of which recognize bacterial products, showed differential expression, and only the TLR5 ligand flagellin was able to induce FV3 reactivation similarly to HK E. coli . Furthermore, only the TLR5 ligand flagellin induced FV3 reactivation in peritoneal macrophages both in vitro and in vivo . These data indicate that the TLR5 signaling pathway can trigger FV3 reactivation and suggest a role of secondary bacterial infections or microbiome alterations (stress or pollution) in initiating sudden deadly disease outbreaks in amphibian populations with detectable persistent asymptomatic ranavirus. IMPORTANCE This study in the amphibian Xenopus laevis provides new evidence of the critical role of macrophages in the persistence of ranaviruses in a quiescent state as well as in the reactivation of these pathogens into a virulent infection. Among the multiple microbial sensors expressed by macrophages, our data underscore the preponderant involvement of TLR5 stimulation in triggering the reactivation of quiescent FV3 in resident peritoneal macrophages, unveiling a mechanistic connection between the reactivation of persisting ranavirus infection and bacterial coinfection. This suggests a role for secondary bacterial infections or microbiome alterations (stress or pollution) in initiating sudden deadly disease outbreaks in amphibian populations with detectable persistent asymptomatic ranavirus. 
    more » « less
  5. Cooke, Steven (Ed.)
    Abstract Haematophagous ectoparasites can directly affect the health of young animals by depleting blood volume and reducing energetic resources available for growth and development. Less is known about the effects of ectoparasitism on stress physiology (i.e. glucocorticoid hormones) or animal behaviour. Mexican chicken bugs (Haematosiphon inodorus; Hemiptera: Cimicidae) are blood-sucking ectoparasites that live in nesting material or nest substrate and feed on nestling birds. Over the past 50 years, the range of H. inodorus has expanded, suggesting that new hosts or populations may be vulnerable. We studied the physiological and behavioural effects of H. inodorus on golden eagle (Aquila chrysaetos) nestlings in southwestern Idaho. We estimated the level of H. inodorus infestation at each nest and measured nestling mass, haematocrit, corticosterone concentrations, telomere lengths and recorded early fledging and mortality events. At nests with the highest levels of infestation, nestlings had significantly lower mass and haematocrit. In addition, highly parasitized nestlings had corticosterone concentrations twice as high on average (42.9 ng/ml) than non-parasitized nestlings (20.2 ng/ml). Telomeres of highly parasitized female nestlings significantly shortened as eagles aged, but we found no effect of parasitism on the telomeres of male nestlings. Finally, in nests with higher infestation levels, eagle nestlings were 20 times more likely to die, often because they left the nest before they could fly. These results suggest that H. inodorus may limit local golden eagle populations by decreasing productivity. For eagles that survived infestation, chronically elevated glucocorticoids and shortened telomeres may adversely affect cognitive function or survival in this otherwise long-lived species. Emerging threats from ectoparasites should be an important management consideration for protected species, like golden eagles. 
    more » « less