skip to main content


Title: Low occurrence of ranavirus in the Prairie Pothole Region of Montana and North Dakota (USA) contrasts with prior surveys

Ranaviruses are emerging pathogens that have caused mortality events in amphibians worldwide. Despite the negative effects of ranaviruses on amphibian populations, monitoring efforts are still lacking in many areas, including in the Prairie Pothole Region (PPR) of North America. Some PPR wetlands in Montana and North Dakota (USA) have been contaminated by energy-related saline wastewaters, and increased salinity has been linked to greater severity of ranavirus infections. In 2017, we tested tissues from larvae collected at 7 wetlands that ranged in salinity from 26 to 4103 mg Cl l-1. In 2019, we used environmental DNA (eDNA) to test for ranaviruses in 30 wetlands that ranged in salinity from 26 to 11754 mg Cl l-1. A previous study (2013-2014) found that ranavirus-infected amphibians were common across North Dakota, including in some wetlands near our study area. Overall, only 1 larva tested positive for ranavirus infection, and we did not detect ranavirus in any eDNA samples. There are several potential reasons why we found so little evidence of ranaviruses, including low larval sample sizes, mismatch between sampling and disease occurrence, larger pore size of our eDNA filters, temporal variation in outbreaks, low host abundance, or low occurrence or prevalence of ranaviruses in the wetlands we sampled. We suggest future monitoring efforts be conducted to better understand the occurrence and prevalence of ranaviruses within the PPR.

 
more » « less
Award ID(s):
1754474
PAR ID:
10512346
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Inter-Research
Date Published:
Journal Name:
Diseases of Aquatic Organisms
Volume:
147
ISSN:
0177-5103
Page Range / eLocation ID:
149 to 154
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Rising salinity from road deicing salts threatens the survival and reproduction of freshwater organisms. We conducted two experiments to address howDaphnia pulexsurvival and reproduction were affected by road salt concentration (control, 120, 640 and 1200 mg Cl/L) crossed with three concentrations of water hardness (20, 97, 185 mg CaCO3/L).D. pulexsurvival was poor in our hard water treatment in both experiments (185 mg CaCO3/L), potentially indicating a low tolerance to hard water for the strain used in our experiments. With the remaining two hardness treatments (20 and 97 mg CaCO3/L), we found no evidence of an interactive effect between salt concentration and water hardness onD. pulexsurvival. In our population-level experiment,D. pulexsurvival was reduced by > 60% at 120 mg Cl/L compared to the control. In the individual experiment, survival was similar between the control and 120 mg Cl/L, but ≤ 40% of individuals survived in 640 and 1200 mg Cl/L. For the surviving individuals across all treatments, the number of offspring produced per individual declined with increasing Clconcentration and in hard water. Our results indicate that current Clthresholds may not protect some zooplankton and reduced food availability per capita may enhance the negative impacts of road salt.

     
    more » « less
  2. The stress-induced susceptibility hypothesis, which predicts chronic stress weakens immune defences, was proposed to explain increasing infectious disease-related mass mortality and population declines. Previous work characterized wetland salinization as a chronic stressor to larval amphibian populations. Thus, we combined field observations with experimental exposures quantifying epidemiological parameters to test the role of salinity stress in the occurrence of ranavirus-associated mass mortality events. Despite ubiquitous pathogen presence (94%), populations exposed to salt runoff had slightly more frequent ranavirus related mass mortality events, more lethal infections, and 117-times greater pathogen environmental DNA. Experimental exposure to chronic elevated salinity (0.8–1.6 g l −1 Cl − ) reduced tolerance to infection, causing greater mortality at lower doses. We found a strong negative relationship between splenocyte proliferation and corticosterone in ranavirus-infected larvae at a moderate elevation of salinity, supporting glucocorticoid-medicated immunosuppression, but not at high salinity. Salinity alone reduced proliferation further at similar corticosterone levels and infection intensities. Finally, larvae raised in elevated salinity had 10 times more intense infections and shed five times as much virus with similar viral decay rates, suggesting increased transmission. Our findings illustrate how a small change in habitat quality leads to more lethal infections and potentially greater transmission efficiency, increasing the severity of ranavirus epidemics. 
    more » « less
  3. Ariel, Ellen (Ed.)
    Ranaviruses have been associated with rising numbers of mass die-offs in amphibian populations around the globe. However, most studies on ranaviruses to date focused on larval amphibians. To assess the role of postmetamorphic amphibians in the epidemiology of ranaviruses and to determine the role of viral immune-suppression genes, we performed a bath-exposure study on post-metamorphic wood frogs ( Rana sylvatica) using environmentally relevant concentrations of wild-type Frog virus 3 (WT FV3), and a gene-knockout mutant (KO FV3), deficient for the putative immune-suppression gene vIF-2α. We observed a 42% infection rate and 5% mortality across the virus challenges, with infection rates and viral loads following a dose-dependent pattern. Individuals exposed to the knockout variant exhibited significantly decreased growth and increased lethargy compared with wild-type treatments. Although 85% of exposed individuals exhibited common signs of ranavirosis throughout the experiment, most of these individuals did not exhibit signs of infection by 40 d post-exposure. Overall, we showed that even a single short time exposure to environmentally relevant concentrations of ranavirus may cause sublethal infections in postmetamorphic amphibians, highlighting the importance of this life stage in the epidemiology of ranaviruses. Our study also supports the importance of the vIF-2α gene in immune-suppression in infected individuals. 
    more » « less
  4. The Chinese giant salamander, belonging to an ancient amphibian lineage, is the largest amphibian existing in the world, and is also an important animal for artificial cultivation in China. However, some aspects of the innate and adaptive immune system of the Chinese giant salamander are still unknown. The Chinese giant salamander iridovirus (GSIV), a member of the Ranavirus genus (family Iridoviridae ), is a prominent pathogen causing high mortality and severe economic losses in Chinese giant salamander aquaculture. As a serious threat to amphibians worldwide, the etiology of ranaviruses has been mainly studied in model organisms, such as the Ambystoma tigrinum and Xenopus . Nevertheless, the immunity to ranavirus in Chinese giant salamander is distinct from other amphibians and less known. We review the unique immune system and antiviral responses of the Chinese giant salamander, in order to establish effective management of virus disease in Chinese giant salamander artificial cultivation. 
    more » « less
  5. Ariel, Ellen (Ed.)

    Ranaviruses are emerging pathogens of poikilothermic vertebrates. In 2015 the Global Ranavirus Reporting System (GRRS) was established as a centralized, open access, online database for reports of the presence (and absence) of ranavirus around the globe. The GRRS has multiple data layers (e.g., location, date, host(s) species, and methods of detection) of use to those studying the epidemiology, ecology, and evolution of this group of viruses. Here we summarize the temporal, spatial, diagnostic, and host-taxonomic patterns of ranavirus reports in the GRRS. The number, distribution, and host diversity of ranavirus reports have increased dramatically since the mid 1990s, presumably in response to increased interest in ranaviruses and the conservation of their hosts, and also the availability of molecular diagnostics. Yet there are clear geographic and taxonomic biases among the reports. We encourage ranavirus researchers to add their studies to the portal because such collation can provide collaborative opportunities and unique insights to our developing knowledge of this pathogen and the emerging infectious disease that it causes.

     
    more » « less