skip to main content


Title: Automated Classification of Power Plants by Generation Type
Generation type of power plant (e.g. steam, wind) is an important attribute in power grid and energy market studies such as bidding strategy, audit of generation mix, and accounting for load- generation matching. Recently, regional transmission organizations (RTOs) and independent system operators (ISOs) are increasingly redacting a wide range of grid and market data attributes to protect their participants’ business interests. Lack of this information can prevent important power grid research. We propose techniques to infer power plant generation types based on publicly-available market data. We develop and evaluate these techniques on data available from the Midcontinent Independent System Operator (MISO). Evaluation shows successful classification of power plants, achieving 100% precision and 99.5% recall for wind plants, and 91.7% overall accuracy. On the basis of generated power, our classification shows 100% precision and 99.8% recall for wind plants and 93.2% overall accuracy. Our ultimate goal is to generalize to a wide range of RTOs/ISOs. We explore three feature types (bid pattern, capability, and opera- tion), and evaluate their classification value for MISO. We also assess applicability to other RTOs/ISOs based on available market data. These studies inform the efficacy of the features for generation-type inference in other RTOs/ISOs.  more » « less
Award ID(s):
1832230 1901466
NSF-PAR ID:
10155310
Author(s) / Creator(s):
;
Date Published:
Journal Name:
The Eleventh ACM International Conference on Future Energy Systems (e-Energy ’20)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Premise

    Despite the economic significance of insect damage to plants (i.e., herbivory), long‐term data documenting changes in herbivory are limited. Millions of pressed plant specimens are now available online and can be used to collect big data on plant–insect interactions during the Anthropocene.

    Methods

    We initiated development of machine learning methods to automate extraction of herbivory data from herbarium specimens by training an insect damage detector and a damage type classifier on two distantly related plant species (Quercus bicolorandOnoclea sensibilis). We experimented with (1) classifying six types of herbivory and two control categories of undamaged leaf, and (2) detecting two of the damage categories for which several hundred annotations were available.

    Results

    Damage detection results were mixed, with a mean average precision of 45% in the simultaneous detection and classification of two types of damage. However, damage classification on hand‐drawn boxes identified the correct type of herbivory 81.5% of the time in eight categories. The damage classifier was accurate for categories with 100 or more test samples.

    Discussion

    These tools are a promising first step for the automation of herbivory data collection. We describe ongoing efforts to increase the accuracy of these models, allowing researchers to extract similar data and apply them to biological hypotheses.

     
    more » « less
  2. null (Ed.)
    Urban flooding is a major natural disaster that poses a serious threat to the urban environment. It is highly demanded that the flood extent can be mapped in near real-time for disaster rescue and relief missions, reconstruction efforts, and financial loss evaluation. Many efforts have been taken to identify the flooding zones with remote sensing data and image processing techniques. Unfortunately, the near real-time production of accurate flood maps over impacted urban areas has not been well investigated due to three major issues. (1) Satellite imagery with high spatial resolution over urban areas usually has nonhomogeneous background due to different types of objects such as buildings, moving vehicles, and road networks. As such, classical machine learning approaches hardly can model the spatial relationship between sample pixels in the flooding area. (2) Handcrafted features associated with the data are usually required as input for conventional flood mapping models, which may not be able to fully utilize the underlying patterns of a large number of available data. (3) High-resolution optical imagery often has varied pixel digital numbers (DNs) for the same ground objects as a result of highly inconsistent illumination conditions during a flood. Accordingly, traditional methods of flood mapping have major limitations in generalization based on testing data. To address the aforementioned issues in urban flood mapping, we developed a patch similarity convolutional neural network (PSNet) using satellite multispectral surface reflectance imagery before and after flooding with a spatial resolution of 3 meters. We used spectral reflectance instead of raw pixel DNs so that the influence of inconsistent illumination caused by varied weather conditions at the time of data collection can be greatly reduced. Such consistent spectral reflectance data also enhance the generalization capability of the proposed model. Experiments on the high resolution imagery before and after the urban flooding events (i.e., the 2017 Hurricane Harvey and the 2018 Hurricane Florence) showed that the developed PSNet can produce urban flood maps with consistently high precision, recall, F1 score, and overall accuracy compared with baseline classification models including support vector machine, decision tree, random forest, and AdaBoost, which were often poor in either precision or recall. The study paves the way to fuse bi-temporal remote sensing images for near real-time precision damage mapping associated with other types of natural hazards (e.g., wildfires and earthquakes). 
    more » « less
  3. This study describes the evaluation of a range of approaches to semantic segmentation of hyperspectral images of sorghum plants, classifying each pixel as either nonplant or belonging to one of the three organ types (leaf, stalk, panicle). While many current methods for segmentation focus on separating plant pixels from background, organ-specific segmentation makes it feasible to measure a wider range of plant properties. Manually scored training data for a set of hyperspectral images collected from a sorghum association population was used to train and evaluate a set of supervised classification models. Many algorithms show acceptable accuracy for this classification task. Algorithms trained on sorghum data are able to accurately classify maize leaves and stalks, but fail to accurately classify maize reproductive organs which are not directly equivalent to sorghum panicles. Trait measurements extracted from semantic segmentation of sorghum organs can be used to identify both genes known to be controlling variation in a previously measured phenotypes (e.g., panicle size and plant height) as well as identify signals for genes controlling traits not previously quantified in this population (e.g., stalk/leaf ratio). Organ level semantic segmentation provides opportunities to identify genes controlling variation in a wide range of morphological phenotypes in sorghum, maize, and other related grain crops. 
    more » « less
  4. Climate change impacts the electric power system by affecting both the load and generation. It is paramount to understand this impact in the context of renewable energy as their market share has increased and will continue to grow. This study investigates the impact of climate change on the supply of renewable energy through applying novel metrics of intermittency, power production and storage required by the renewable energy plants as a function of historical climate data variability. Here we focus on and compare two disparate locations, Palma de Mallorca in the Balearic Islands and Cordova, Alaska. The main results of this analysis of wind, solar radiation and precipitation over the 1950–2020 period show that climate change impacts both the total supply available and its variability. Importantly, this impact is found to vary significantly with location. This analysis demonstrates the feasibility of a process to evaluate the local optimal mix of renewables, the changing needs for energy storage as well as the ability to evaluate the impact on grid reliability regarding both penetration of the increasing renewable resources and changes in the variability of the resource. This framework can be used to quantify the impact on both transmission grids and microgrids and can guide possible mitigation paths. 
    more » « less
  5. Solar energy capacity is continuing to increase. The key challenge with integrating solar into buildings and the electric grid is its high power generation variability, which is a function of many factors, including a site's location, time, weather, and numerous physical attributes. There has been significant prior work on solar performance modeling and forecasting that infers a site's current and future solar generation based on these factors. Accurate solar performance models and forecasts are also a pre-requisite for conducting a wide range of building and grid energy-efficiency research. Unfortunately, much of the prior work is not accessible to researchers, either because it has not been released as open source, is time-consuming to re-implement, or requires access to proprietary data sources. To address the problem, we present Solar-TK, a data-driven toolkit for solar performance modeling and forecasting that is simple, extensible, and publicly accessible. Solar-TK's simple approach models and forecasts a site's solar output given only its location and a small amount of historical generation data. Solar-TK's extensible design includes a small collection of independent modules that connect together to implement basic modeling and forecasting, while also enabling users to implement new energy analytics. We plan to release Solar-TK as open source to enable research that requires realistic solar models and forecasts, and to serve as a baseline for comparing new solar modeling and forecasting techniques. We compare Solar-TK's simple approach with PVlib and show that it yields comparable accuracy. We present three case studies showing how Solar-TK can advance energy-efficiency research. 
    more » « less