skip to main content

Title: Feedback Control of the Locomotion of a Tailed Quadruped Robot
The traditional locomotion paradigm of quadruped robots is to use dexterous (multi degrees of freedom) legs and dynamically optimized footholds to balance the body and achieve stable locomotion. With the introduction of a robotic tail, a new locomotion paradigm becomes possible as the balancing is achieved by the tail and the legs are only responsible for propulsion. Since the burden on the leg is reduced, leg complexity can be also reduced. This paper explores this new paradigm by tackling the dynamic locomotion control problem of a reduced complexity quadruped (RCQ) with a pendulum tail. For this specific control task, a new control strategy is proposed in a manner that the legs are planned to execute the open-loop gait motion in advance, while the tail is controlled in a closed-loop to prepare the quadruped body in the desired orientation. With these two parts working cooperatively, the quadruped achieves dynamic locomotion. Partial feedback linearization (PFL) controller is used for the closed-loop tail control. Pronking, bounding, and maneuvering are tested to evaluate the controller’s performance. The results validate the proposed controller and demonstrate the feasibility and potential of the new locomotion paradigm.
Authors:
;
Award ID(s):
1906727
Publication Date:
NSF-PAR ID:
10326665
Journal Name:
ASME 2021 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 45TH MECHANISMS AND ROBOTICS CONFERENCE (MR)
Volume:
Volume 8B
Issue:
V08BT08A009
Page Range or eLocation-ID:
1-8
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This paper presents the design, dynamic modeling, and integration of a single degree of freedom (DOF) robotic leg mechanism intended for tailed quadruped locomotion. The design employs a lightweight six-bar linkage that couples the hip and knee flexion/extension joints mechanically, requiring only a single degree of actuation. By utilizing a parametric optimization, a unique topological arrangement is achieved that results in a foot trajectory that is well suited for dynamic gaits including trot-running, bounding, and galloping. Furthermore, a singular perturbation is introduced to the hybrid dynamic framework to address the lack of robust methods that provide a solution for the differential algebraic equations (DAEs) that characterize closed kinematic chain (CKC) structures as well as the hybrid nature of legged locomotion. By approximating the system dynamics as ordinary differential equations (ODEs) and asymptotically driving the constraint error to zero, CKCs can adopt existing real-time model-based/model-predictive/hybrid-control frameworks. The dynamic model is verified through simulations and the foot trajectory was experimentally validated. Preliminary open-loop planar running demonstrated speeds up to 3.2 m/s. These advantages, accompanied by low-integration costs, warrant this leg as a robust, effective platform for future tailed quadruped research.
  2. Synopsis Serpentine tail structures are widely observed in the animal kingdom and are thought to help animals to handle various motion tasks. Developing serpentine robotic tails and using them on legged robots has been an attractive idea for robotics. This article presents the theoretical analysis for such a robotic system that consists of a reduced complexity quadruped and a serpentine robotic tail. Dynamic model and motion controller are formulated first. Simulations are then conducted to analyze the tail’s performance on the airborne righting and maneuvering tasks of the quadruped. Using the established simulation environment, systematic analyses on critical design parameters, namely, the tail mounting point, tail length, torso center of mass (COM) location, tail–torso mass ratio, and the power consumption distribution, are performed. The results show that the tail length and the mass ratio influence the maneuvering angle the most while the COM location affects the landing stability the most. Based on these design guidelines, for the current robot design, the optimal tail parameters are determined as a length of two times as long as the torso length and a weight of 0.09 times as heavy as the torso weight.
  3. Abstract Series elastic actuators (SEAs) are increasingly popular in wearable robotics due to their high fidelity closed-loop torque control capability. Therefore, it has become increasingly important to characterize its performance when used in dynamic environments. However, the conventional design approach does not fully capture the complexity of the entire exoskeleton system. These limitations stem from identifying design criteria with inadequate biomechanics data, utilizing an off-the-shelf user interface, and applying a benchtop-based proportional-integral-derivative control for actual low-level torque tracking. While this approach shows decent actuator performance, it does not consider human factors such as the dynamic back-driving nature of human-exoskeleton systems as well as soft human tissue dampening during the load transfer. Using holistic design guidelines to improve the SEA-based exoskeleton performance during dynamic locomotion, our final system has an overall mass of 4.8 kg (SEA mass of 1.1 kg) and can provide a peak joint torque of 108 Nm with a maximum velocity of 5.2 rad/s. Additionally, we present a user state-based feedforward controller to further improve the low-level torque tracking for diverse walking conditions. Our study results provide future exoskeleton designers with a foundation to further improve SEA-based exoskeleton’s torque tracking response for maximizing human-exoskeleton performance during dynamic locomotion.
  4. In this work, we introduce a novel approach to assistive exoskeleton (or powered orthosis) control which avoids needing task and gait phase information. Our approach is based on directly designing the Hamiltonian dynamics of the target closed-loop behavior, shaping the energy of the human and the robot. Relative to previous energy shaping controllers for assistive exoskeletons, we introduce ground reaction force and torque information into the target behavior definition, reformulate the kinematics so as to avoid explicit matching conditions due to under-actuation, and avoid the need to switch between swing and stance energy shapes. Our controller introduces new states into the target Hamiltonian energy that represent a virtual second leg that is connected to the physical leg using virtual springs. The impulse the human imparts to the physical leg is amplified and applied to the virtual leg, but the ground reaction force acts only on the physical leg. A state transformation allows the proposed control to be available using only encoders, an IMU, and ground reaction force sensors. We prove that this controller is stable and passive when acted on by the ground reaction force and demonstrate the controller's strength amplifying behavior in a simulation. A linear analysis based onmore »small signal assumptions allows us to explain the relationship between our tuning parameters and the frequency domain amplification bandwidth.« less
  5. Whole-body control (WBC) is a generic task-oriented control method for feedback control of loco-manipulation behaviors in humanoid robots. The combination of WBC and model-based walking controllers has been widely utilized in various humanoid robots. However, to date, the WBC method has not been employed for unsupported passive-ankle dynamic locomotion. As such, in this article, we devise a new WBC, dubbed the whole-body locomotion controller (WBLC), that can achieve experimental dynamic walking on unsupported passive-ankle biped robots. A key aspect of WBLC is the relaxation of contact constraints such that the control commands produce reduced jerk when switching foot contacts. To achieve robust dynamic locomotion, we conduct an in-depth analysis of uncertainty for our dynamic walking algorithm called the time-to-velocity-reversal (TVR) planner. The uncertainty study is fundamental as it allows us to improve the control algorithms and mechanical structure of our robot to fulfill the tolerated uncertainty. In addition, we conduct extensive experimentation for: (1) unsupported dynamic balancing (i.e., in-place stepping) with a six-degree-of-freedom biped, Mercury; (2) unsupported directional walking with Mercury; (3) walking over an irregular and slippery terrain with Mercury; and 4) in-place walking with our newly designed ten-DoF viscoelastic liquid-cooled biped, DRACO. Overall, the main contributions of thismore »work are on: (a) achieving various modalities of unsupported dynamic locomotion of passive-ankle bipeds using a WBLC controller and a TVR planner; (b) conducting an uncertainty analysis to improve the mechanical structure and the controllers of Mercury; and (c) devising a whole-body control strategy that reduces movement jerk during walking.« less