skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Quasi‐Binary Transition Metal Dichalcogenide Alloys: Thermodynamic Stability Prediction, Scalable Synthesis, and Application
Transition metal dichalcogenide (TMDCs) alloys could have a wide range of physical and chemical properties, ranging from charge density waves to superconductivity and electrochemical activities. While many exciting behaviors of unary TMDCs have been demonstrated, the vast compositional space of TMDC alloys has remained largely unexplored due to the lack of understanding regarding their stability when accommodating different cations or chalcogens in a single‐phase. Here, a theory‐guided synthesis approach is reported to achieve unexplored quasi‐binary TMDC alloys through computationally predicted stability maps. Equilibrium temperature–composition phase diagrams using first‐principles calculations are generated to identify the stability of 25 quasi‐binary TMDC alloys, including some involving non‐isovalent cations and are verified experimentally through the synthesis of a subset of 12 predicted alloys using a scalable chemical vapor transport method. It is demonstrated that the synthesized alloys can be exfoliated into 2D structures, and some of them exhibit: i) outstanding thermal stability tested up to 1230 K, ii) exceptionally high electrochemical activity for the CO2 reduction reaction in a kinetically limited regime with near zero overpotential for CO formation, iii) excellent energy efficiency in a high rate Li–air battery, and iv) high break‐down current density for interconnect applications. This framework can be extended to accelerate the discovery of other TMDC alloys for various applications.  more » « less
Award ID(s):
1729787 1800357
PAR ID:
10156236
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Advanced Materials
ISSN:
0935-9648
Page Range / eLocation ID:
1907041
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Transition metal dichalcogenide (TMDCs) alloys could have a wide range of physical and chemical properties, ranging from charge density waves to superconductivity and electrochemical activities. While many exciting behaviors of unary TMDCs have been demonstrated, the vast compositional space of TMDC alloys has remained largely unexplored due to the lack of understanding regarding their stability when accommodating different cations or chalcogens in a single‐phase. Here, a theory‐guided synthesis approach is reported to achieve unexplored quasi‐binary TMDC alloys through computationally predicted stability maps. Equilibrium temperature–composition phase diagrams using first‐principles calculations are generated to identify the stability of 25 quasi‐binary TMDC alloys, including some involving non‐isovalent cations and are verified experimentally through the synthesis of a subset of 12 predicted alloys using a scalable chemical vapor transport method. It is demonstrated that the synthesized alloys can be exfoliated into 2D structures, and some of them exhibit: i) outstanding thermal stability tested up to 1230 K, ii) exceptionally high electrochemical activity for the CO2 reduction reaction in a kinetically limited regime with near zero overpotential for CO formation, iii) excellent energy efficiency in a high rate Li–air battery, and iv) high break‐down current density for interconnect applications. This framework can be extended to accelerate the discovery of other TMDC alloys for various applications. 
    more » « less
  2. Compositional tunability, an indispensable parameter to modify materials' properties, can open up new applications for the class of van der Waals (vdW) layered materials such as transition-metal dichalcogenides (TMDCs). To-date, multi-element alloy TMDC layers are obtained via exfoliation from bulk polycrystalline powders. Here, we demonstrate direct deposition of high-entropy alloy disulfide, (VNbMoTaW)S2, layers with controllable thicknesses on free-standing graphene membranes and on bare and hBN-covered Al2O3(0001) substrates via ultra-high vacuum reactive dc magnetron sputtering of VNbMoTaW target in Kr and H2S gas mixtures. Using a combination of density functional theory calculations, Raman spectroscopy, X-ray diffraction, scanning transmission electron microscopy coupled with energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy, we determine that the as-deposited layers are single-phase, 2H-structured, and 0001-oriented (V0.10Nb0.16Mo0.19Ta0.28W0.27)S2.44. Our synthesis route is general and applicable for heteroepitaxial growth of a wide variety of TMDC alloys and potentially other multielement alloy vdW compounds with the desired compositions. 
    more » « less
  3. null (Ed.)
    High-entropy alloys combine multiple principal elements at a near equal fraction to form vast compositional spaces to achieve outstanding functionalities that are absent in alloys with one or two principal elements. Here, the prediction, synthesis, and multiscale characterization of 2D high-entropy transition metal dichalcogenide (TMDC) alloys with four/five transition metals is reported. Of these, the electrochemical performance of a five-component alloy with the highest configurational entropy, (MoWVNbTa)S2, is investigated for CO2 conversion to CO, revealing an excellent current density of 0.51 A cm−2 and a turnover frequency of 58.3 s−1 at ≈ −0.8 V versus reversible hydrogen electrode. First-principles calculations show that the superior CO2 electroreduction is due to a multi-site catalysis wherein the atomic-scale disorder optimizes the rate-limiting step of CO desorption by facilitating isolated transition metal edge sites with weak CO binding. 2D high-entropy TMDC alloys provide a materials platform to design superior catalysts for many electrochemical systems. 
    more » « less
  4. High-entropy alloys combine multiple principal elements at a near equal fraction to form vast compositional spaces to achieve outstanding functionalities that are absent in alloys with one or two principal elements. Here, the prediction, synthesis, and multiscale characterization of 2D high-entropy transition metal dichalcogenide (TMDC) alloys with four/five transition metals is reported. Of these, the electrochemical performance of a five-component alloy with the highest configurational entropy, (MoWVNbTa)S2, is investigated for CO2 conversion to CO, revealing an excellent current density of 0.51 A cm−2 and a turnover frequency of 58.3 s−1 at ≈ −0.8 V versus reversible hydrogen electrode. First-principles calculations show that the superior CO2 electroreduction is due to a multi-site catalysis wherein the atomic-scale disorder optimizes the rate-limiting step of CO desorption by facilitating isolated transition metal edge sites with weak CO binding. 2D high-entropy TMDC alloys provide a materials platform to design superior catalysts for many electrochemical systems. 
    more » « less
  5. Cesium‐based quasi‐2D halide perovskites (HPs) offer promising functionalities and low‐temperature manufacturability, suited to stable tandem photovoltaics. However, the chemical interplays between the molecular spacers and the inorganic building blocks during crystallization cause substantial phase complexities in the resulting matrices. To successfully optimize and implement the quasi‐2D HP functionalities, a systematic understanding of spacer chemistry, along with the seamless navigation of the inherently discrete molecular space, is necessary. Herein, by utilizing high‐throughput automated experimentation, the phase complexities in the molecular space of quasi‐2D HPs are explored, thus identifying the chemical roles of the spacer cations on the synthesis and functionalities of the complex materials. Furthermore, a novel active machine learning algorithm leveraging a two‐stage decision‐making process, called gated Gaussian process Bayesian optimization is introduced, to navigate the discrete ternary chemical space defined with two distinctive spacer molecules. Through simultaneous optimization of photoluminescence intensity and stability that “tailors” the chemistry in the molecular space, a ternary‐compositional quasi‐2D HP film realizing excellent optoelectronic functionalities is demonstrated. This work not only provides a pathway for the rational and bespoke design of complex HP materials but also sets the stage for accelerated materials discovery in other multifunctional systems. 
    more » « less