skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Estimating what US residential customers are willing to pay for resilience to large electricity outages of long duration
Climate-induced extreme weather events, as well as other natural and human-caused disasters, have the potential to increase the duration and frequency of large power outages. Resilience, in the form of supplying a small amount of power to homes and communities, can mitigate outage consequences by sustaining critical electricity-dependent services. Public decisions about investing in resilience depend, in part, on how much residential customers value those critical services. Here we develop a method to estimate residential willingness-to-pay for back-up electricity services in the event of a large 10-day blackout during very cold winter weather, and then survey a sample of 483 residential customers across northeast USA using that method. Respondents were willing to pay US$1.7–2.3/kWh to sustain private demands and US$19–29/day to support their communities. Previous experience with long-duration outages and the framing of the cause of the outage (natural or human-caused) did not affect willingness-to-pay.  more » « less
Award ID(s):
1911819
PAR ID:
10156486
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Nature energy
Volume:
5
ISSN:
2058-7546
Page Range / eLocation ID:
250-258
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Large‐area, long‐duration power outages are increasingly common in the United States, and cost the economy billions of dollars each year. Building a strategy to enhance grid resilience requires an understanding of the optimal mix of preventive and corrective actions, the inefficiencies that arise when self‐interested parties make resilience investment decisions, and the conditions under which regulators may facilitate the realization of efficient market outcomes. We develop a bi‐level model to examine the mix of preventive and corrective measures that enhances grid resilience to a severe storm. The model represents a Stackelberg game between a regulated utility (leader) that may harden distribution feeders before a long‐duration outage and/or deploy restoration crews after the disruption, and utility customers with varying preferences for reliable power (followers) who may invest in backup generators. We show that the regulator's denial of cost recovery for the utility's preventive expenditures, coupled with the misalignment between private objectives and social welfare maximization, yields significant inefficiencies in the resilience investment mix. Allowing cost recovery for a higher share of the utility's capital expenditures in preventive measures, extending the time horizon associated with damage cost recovery, and adopting a storm restoration compensation mechanism shift the realized market outcome toward the efficient solution. If about one‐fifth of preventive resilience investments is approved by regulators, requiring utilities to pay a compensation of $365 per customer for a 3‐day outage (about seven times the level of compensation currently offered by US utilities) provides significant incentives toward more efficient preventive resilience investments. 
    more » « less
  2. Abstract Major disasters such as wildfire, tornado, hurricane, tropical storm, and flooding cause disruptions in infrastructure systems such as power and water supply, wastewater management, telecommunication, and transportation facilities. Disruptions in electricity infrastructure have negative impacts on sectors throughout a region, including education, medical services, financial services, and recreation. In this study, we introduced a novel approach to investigate the factors that can be associated with longer restoration time of power service after a hurricane. Considering restoration time as the dependent variable and using a comprehensive set of county-level data, we estimated a generalized accelerated failure time (GAFT) model that accounts for spatial dependence among observations for time to event data. The model fit improved by 12% after considering the effects of spatial correlation in time to event data. Using the GAFT model and Hurricane Irma’s impact on Florida as a case study, we examined: (1) differences in electric power outages and restoration rates among different types of power companies—investor-owned power companies, rural and municipal cooperatives; (2) the relationship between the duration of power outage and power system variables; and (3) the relationship between the duration of power outage and socioeconomic attributes. The findings of this study indicate that counties with a higher percentage of customers served by investor-owned electric companies and lower median household income faced power outage for a longer time. This study identified the key factors to predict restoration time of hurricane-induced power outages, allowing disaster management agencies to adopt strategies required for restoration process. 
    more » « less
  3. Large-scale damage to the power infrastructure from hurricanes and high-wind events can have devastating ripple effects on infrastructure, the broader economy, households, com- munities, and regions. Using Hurricane Irma’s impact on Florida as a case study, we examined: (1) differences in electric power outages and restoration rates between urban and rural counties; (2) the duration of electric power outages in counties exposed to tropical storm force winds versus hurricane Category 1 force winds; and (3) the rela- tionship between the duration of power outage and socioeconomic vulnerability. We used power outage data for the period September 9, 2017–September 29, 2017. At the peak of the power outages following Hurricane Irma, over 36% of all accounts in Florida were without electricity. We found that the rural counties, predominantly served by rural electric cooperatives and municipally owned utilities, experienced longer power outages and much slower and uneven restoration times. Results of three spatial lag models show that large percentages of customers served by rural electric cooperatives and municipally owned utilities were a strong predictor of the duration of extended power outages. There was also a strong positive association across all three models between power outage duration and urban/rural county designation. Finally, there is positive spatial dependence between power outages and several social vulnerability indicators. Three socioeconomic variables found to be statistically significant highlight three different aspects of vulnerability to power outages: minority groups, population with sensory, physical and mental disability, and economic vulnerability expressed as unemployment rate. The findings from our study have broader planning and policy relevance beyond our case study area, and highlight the need for additional research to deepen our understanding of how power restoration after hurricanes contributes to and is impacted by the socioeconomic vulnerabilities of communities. 
    more » « less
  4. We automatically extract resilience events and novel outage and restore processes from standard transmission utility detailed outage data. This new processing is applied to the outage data collected in NERC’s Transmission Availability Data System to introduce and analyze statistics that quantify resilience of the transmission system against extreme weather events. These metrics (such as outage rate and duration, number of elements outaged, rated capacity outaged, restore duration, maximum simultaneous outages, and element-days lost) are calculated for all large weather-related events on the North American transmission system from 2015 to 2020 and then by extreme weather type that caused them such as hurricanes, tornadoes, and winter storms. Finally, we study how performance of the system changed with respect to the resilience metrics by season and year. 
    more » « less
  5. Cherifi, H; Donduran, M; Rocha, LM; Cherifi, C; Varol, O (Ed.)
    Long power outages caused by weather can have a big impact on the economy, infrastructure, and quality of life in affected areas. It’s hard to provide early and accurate warnings for these disruptions because severe weather often leads to missing weather recordings, making it difficult to make learning-based predictions. To address this challenge, we have developed HMN-RTS, a hierarchical multiplex network that classifies disruption severity by temporal learning from integrated weather recordings and social media posts. This new framework’s multiplex network layers gather information about power outages, weather, lighting, land cover, transmission lines, and social media comments. Our study shows that this method effectively improves the accuracy of predicting the duration of weather-related outages. The HMN-RTS model improves 3 h ahead outage severity prediction, resulting in a 0.76 macro F1-score vs 0.51 for the best alternative for a five-class problem formulation. The HMN-RTS model provides useful predictions of outage duration 6 h ahead, enabling grid operators to implement outage mitigation strategies promptly. The results highlight the HMN-RTS’s ability to offer early, reliable, and efficient risk assessment. 
    more » « less