skip to main content


Title: Evaluating Robustness of Sequence-based Deepfake Detector Models by Adversarial Perturbation
Deepfake videos are getting better in quality and can be used for dangerous disinformation campaigns. The pressing need to detect these videos has motivated researchers to develop different types of detection models. Among them, the models that utilize temporal information (i.e., sequence-based models) are more effective at detection than the ones that only detect intra-frame discrepancies. Recent work has shown that the latter detection models can be fooled with adversarial examples, leveraging the rich literature on crafting adversarial (still) images. It is less clear, however, how well these attacks will work on sequence-based models that operate on information taken over multiple frames. In this paper, we explore the effectiveness of the Fast Gradient Sign Method (FGSM) and the Carlini-Wagner 𝐿2-norm attack to fool sequence-based deepfake detector models in both the white-box and black-box settings. The experimental results show that the attacks are effective with a maximum success rate of 99.72% and 67.14% in the white-box and black-box attack scenarios, respectively. This highlights the importance of developing more robust sequence-based deepfake detectors and opens up directions for future research.  more » « less
Award ID(s):
2040209
NSF-PAR ID:
10354760
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of the 1st Workshop on Security Implications of Deepfakes and Cheapfakes
Page Range / eLocation ID:
13 to 18
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Deep Neural Networks (DNN) are vulnerable to adversarial perturbations — small changes crafted deliberately on the input to mislead the model for wrong predictions. Adversarial attacks have disastrous consequences for deep learning empowered critical applications. Existing defense and detection techniques both require extensive knowledge of the model, testing inputs and even execution details. They are not viable for general deep learning implementations where the model internal is unknown, a common ‘black-box’ scenario for model users. Inspired by the fact that electromagnetic (EM) emanations of a model inference are dependent on both operations and data and may contain footprints of different input classes, we propose a framework, EMShepherd, to capture EM traces of model execution, perform processing on traces and exploit them for adversarial detection. Only benign samples and their EM traces are used to train the adversarial detector: a set of EM classifiers and class-specific unsupervised anomaly detectors. When the victim model system is under attack by an adversarial example, the model execution will be different from executions for the known classes, and the EM trace will be different. We demonstrate that our air-gapped EMShepherd can effectively detect different adversarial attacks on a commonly used FPGA deep learning accelerator for both Fashion MNIST and CIFAR-10 datasets. It achieves a detection rate on most types of adversarial samples, which is comparable to the state-of-the-art ‘white-box’ software-based detectors. 
    more » « less
  2. null (Ed.)
    As machine learning is deployed in more settings, including in security-sensitive applications such as malware detection, the risks posed by adversarial examples that fool machine-learning classifiers have become magnified. Black-box attacks are especially dangerous, as they only require the attacker to have the ability to query the target model and observe the labels it returns, without knowing anything else about the model. Current black-box attacks either have low success rates, require a high number of queries, produce adversarial images that are easily distinguishable from their sources, or are not flexible in controlling the outcome of the attack. In this paper, we present AdversarialPSO, (Code available: https://github.com/rhm6501/AdversarialPSOImages) a black-box attack that uses few queries to create adversarial examples with high success rates. AdversarialPSO is based on Particle Swarm Optimization, a gradient-free evolutionary search algorithm, with special adaptations to make it effective for the black-box setting. It is flexible in balancing the number of queries submitted to the target against the quality of the adversarial examples. We evaluated AdversarialPSO on CIFAR-10, MNIST, and Imagenet, achieving success rates of 94.9%, 98.5%, and 96.9%, respectively, while submitting numbers of queries comparable to prior work. Our results show that black-box attacks can be adapted to favor fewer queries or higher quality adversarial images, while still maintaining high success rates. 
    more » « less
  3. In a black-box setting, the adversary only has API access to the target model and each query is expensive. Prior work on black-box adversarial examples follows one of two main strategies: (1) transfer attacks use white-box attacks on local models to find candidate adversarial examples that transfer to the target model, and (2) optimization-based attacks use queries to the target model and apply optimization techniques to search for adversarial examples. We propose hybrid attacks that combine both strategies, using candidate adversarial examples from local models as starting points for optimization-based attacks and using labels learned in optimization-based attacks to tune local models for finding transfer candidates. We empirically demonstrate on the MNIST, CIFAR10, and ImageNet datasets that our hybrid attack strategy reduces cost and improves success rates, and in combination with our seed prioritization strategy, enables batch attacks that can efficiently find adversarial examples with only a handful of queries. 
    more » « less
  4. Recent advancements in Deep Neural Networks (DNNs) have enabled widespread deployment in multiple security-sensitive domains. The need for resource-intensive training and the use of valuable domain-specific training data have made these models the top intellectual property (IP) for model owners. One of the major threats to DNN privacy is model extraction attacks where adversaries attempt to steal sensitive information in DNN models. In this work, we propose an advanced model extraction framework DeepSteal that steals DNN weights remotely for the first time with the aid of a memory side-channel attack. Our proposed DeepSteal comprises two key stages. Firstly, we develop a new weight bit information extraction method, called HammerLeak, through adopting the rowhammer-based fault technique as the information leakage vector. HammerLeak leverages several novel system-level techniques tailored for DNN applications to enable fast and efficient weight stealing. Secondly, we propose a novel substitute model training algorithm with Mean Clustering weight penalty, which leverages the partial leaked bit information effectively and generates a substitute prototype of the target victim model. We evaluate the proposed model extraction framework on three popular image datasets (e.g., CIFAR-10/100/GTSRB) and four DNN architectures (e.g., ResNet-18/34/Wide-ResNetNGG-11). The extracted substitute model has successfully achieved more than 90% test accuracy on deep residual networks for the CIFAR-10 dataset. Moreover, our extracted substitute model could also generate effective adversarial input samples to fool the victim model. Notably, it achieves similar performance (i.e., ~1-2% test accuracy under attack) as white-box adversarial input attack (e.g., PGD/Trades). 
    more » « less
  5. Host-based Intrusion Detection Systems (HIDS) automatically detect events that indicate compromise by adversarial applications. HIDS are generally formulated as analyses of sequences of system events such as bash commands or system calls. Anomaly-based approaches to HIDS leverage models of normal (a.k.a. baseline) system behavior to detect and report abnormal events and have the advantage of being able to detect novel attacks. In this article, we develop a new method for anomaly-based HIDS using deep learning predictions of sequence-to-sequence behavior in system calls. Our proposed method, called the ALAD algorithm, aggregates predictions at the application level to detect anomalies. We investigate the use of several deep learning architectures, including WaveNet and several recurrent networks. We show that ALAD empowered with deep learning significantly outperforms previous approaches. We train and evaluate our models using an existing dataset, ADFA-LD, and a new dataset of our own construction, PLAID. As deep learning models are black box in nature, we use an alternate approach, allotaxonographs, to characterize and understand differences in baseline vs. attack sequences in HIDS datasets such as PLAID. 
    more » « less