skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Degradation of PFOA with a nanosecond‐pulsed plasma gas–liquid flowing film reactor
Abstract A continuous gas–liquid flowing film reactor with a nanosecond‐pulsed power supply was utilized for the degradation of perfluorooctanoic acid (PFOA) as assessed by fluoride (F) formation. PFOA, 50 mg/L, dissolved in deionized water was supplied at 2 ml/min with an argon carrier gas. The liquid phase was analyzed for Fusing ion chromatography. The power supply pulse frequency (f) was varied between 0.25‐ and 10‐kHz using a constant 16‐kV input voltage and 40‐ns pulse width. The highest Fproduction rate (), 1.57 × 10−8 mol/s, occurred at 5 kHz whereas the highest efficiency of Fproduction (), 9.12 × 10−9 mol/J, was found at 0.25 kHz.  more » « less
Award ID(s):
1702166
PAR ID:
10156980
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Plasma Processes and Polymers
Volume:
17
Issue:
8
ISSN:
1612-8850
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Nitrification, the microbial conversion of ammonium to nitrite then to nitrate, occurs throughout the oceanic water column, yet the environmental factors influencing the production of nitrate in the euphotic zone (EZ) remain unclear. In this study, the natural abundances of N and O isotopes (δ15N and δ18O, respectively) in nitrate were used in an existing model framework to quantify nitrate contributed by EZ nitrification in the California Current Ecosystem (CCE) during two anomalously warm years. Model data estimated that between 6% and 36% of the EZ nitrate reservoirs were derived from the combined steps of nitrification within the EZ. The CCE data set found nitrification contributions to EZ nitrate to be positively correlated with nitrite concentrations () at the depth of the primary nitrite maximum (PNM). Building on this correlation, EZ nitrification in the southern California Current was estimated to contribute on average 20% ± 6% to EZ nitrate as inferred using the PNMof the long‐term California Cooperative Oceanic Fisheries Investigation (CalCOFI) survey record. A multiple linear regression analysis of the CalCOFI PNMtime series identified two conditions that led to positive deviations in. Enhanced PNM, and potentially enhanced EZ nitrification, may be linked to (1) reduced phytoplankton competition for ammonium () andas interpreted from particulate organic carbon:chlorophyll ratios, and/or (2) to increased supply of(and thenoxidation to) from the degradation of organic nitrogen as interpreted from particulate organic nitrogen concentrations. 
    more » « less
  2. Abstract N‐Type thermoelectrics typically consist of small molecule dopant+polymer host. Only a few polymer dopant+polymer host systems have been reported, and these have lower thermoelectric parameters. N‐type polymers with high crystallinity and order are generally used for high‐conductivity () organic conductors. Few n‐type polymers with only short‐range lamellar stacking for high‐conductivity materials have been reported. Here, we describe an n‐type short‐range lamellar‐stacked all‐polymer thermoelectric system with highestof 78 S−1, power factor (PF) of 163 μW m−1 K−2, and maximum Figure of merit (ZT) of 0.53 at room temperature with a dopant/host ratio of 75 wt%. The minor effect of polymer dopant on the molecular arrangement of conjugated polymer PDPIN at high ratios, high doping capability, high Seebeck coefficient (S) absolute values relative to, and atypical decreased thermal conductivity () with increased doping ratio contribute to the promising performance. 
    more » « less
  3. Abstract In this paper, we are interested in the following question: given an arbitrary Steiner triple systemonvertices and any 3‐uniform hypertreeonvertices, is it necessary thatcontainsas a subgraph provided? We show the answer is positive for a class of hypertrees and conjecture that the answer is always positive. 
    more » « less
  4. Abstract The mechanisms underlying observed global patterns of partitioning precipitation () to evapotranspiration () and runoff () are controversially debated. We test the hypothesis that asynchrony between climatic water supply and demand is sufficient to explain spatio‐temporal variability of water availability. We developed a simple analytical model forthat is determined by four dimensionless characteristics of intra‐annual water supply and demand asynchrony. The analytical model, populated with gridded climate data, accurately predicted global runoff patterns within 2%–4% of independent estimates from global climate models, with spatial patterns closely correlated to observations (). The supply‐demand asynchrony hypothesis provides a physically based explanation for variability of water availability using easily measurable characteristics of climate. The model revealed widespread responsiveness of water budgets to changes in climate asynchrony in almost every global region. Furthermore, the analytical model using global averages independently reproduced the Budyko curve () providing theoretical foundation for this widely used empirical relationship. 
    more » « less
  5. Abstract Cadmium (Cd) is a trace metal whose distribution in the ocean bears a remarkable resemblance to the nutrient phosphate (PO43−). This resemblance has led to the use of Cd as a proxy for ocean nutrient cycling in paleoceanographic applications, but the processes governing the cycling of Cd in the modern ocean remain unclear. In this study, we use previously published Cd observations and an Artificial Neural Network to produce a dissolved Cd climatology that reproduces the observed subtle deviations between the Cd anddistributions. We use the Cd andclimatologies, along with an ocean circulation inverse model, to diagnose the biogeochemical sources and sinks of dissolved Cd and. Our calculations reveal that dissolved Cd, like, is removed in the surface ocean and has a source in the subsurface, consistent with the simultaneous incorporation of Cd andinto sinking organic particles. However, there are also contrasts between the cycling of dissolved Cd andIn particular, thesurface export ratio varies 8‐fold across latitudes, reaching highest values in the iron‐limited sub‐Antarctic Southern Ocean. This depletes Cd relative toin the low‐latitude thermocline while adding excess Cd to deep waters by the regeneration of Cd‐enriched particles. Also, Cd tends to regenerate slightly deeper thanin the subsurface ocean, and theregeneration ratio reaches a maximum at 700–1,500 m. These contrasts are responsible for a slight concavity in therelationship and should be considered when interpreting paleoceanographic Cd records. 
    more » « less