A C-N cross-coupling approach involving oxidative amidations of aromatic aldehydes in the presence of an amide-based nickel(II) pincer catalyst (2) is demonstrated. Upon optimization, quick reaction times (15 min) and an ideal temperature (25 °C) were established and implemented for the conversion of 33 different amide products using only 0.2 mol% of catalyst. Moderate to good turnover numbers (TONs) were obtained for secondary benzamide products, and moderate TONs were obtained for tertiary benzamide products, with the highest turnover number calculated for the 4-chloro-N-(3-phenylpropyl)benzamide product (4i, 309). Gas chromatographic–mass spectrometric (GC–MS) analysis also indicates the formation of alcohols in different reactions, indicating an oxidative amidation process. Kinetic studies were performed by varying the amount of catalyst, aldehyde, LiHMDS base, and amine substrate to determine the order of reaction for each component. Benzaldehyde and benzaldehyde-d6 were reacted with benzylamine, and the kH/kD ratio was determined to understand the rate-determining step. Isotope labeling further revealed that deuterium was being transferred to both the alcohol side product and the target amide product. With the help of kinetic data and UV–visible spectra, a mechanism for the amidation process via the catalyst (2) is proposed through a Ni(I)–Ni(III) pathway.
more »
« less
Identification of key functionalization species in the Cp*Ir( iii )-catalyzed- ortho halogenation of benzamides
Cp*Ir( iii ) complexes have been shown to be effective for the halogenation of N , N -diisopropylbenzamides with N -halosuccinimide as a suitable halogen source. The optimized conditions for the iodination reaction consist of 0.5 mol% [Cp*IrCl 2 ] 2 in 1,2-dichloroethane at 60 °C for 1 h to form a variety of iodinated benzamides in high yields. Increasing the catalyst loading to 6 mol% and the time to 4 h enabled the bromination reaction of the same substrates. Reactivity was not observed for the chlorination of these substrates. A variety of functional groups on the para -position of the benzamide were well tolerated. Kinetic studies showed the reaction dependence is first order in iridium, positive order in benzamide, and zero order in N -iodosuccinimide. A KIE of 2.5 was obtained from an independent H/D kinetic isotope effect study. Computational studies (DFT-BP3PW91) indicate that a CMD mechanism is more likely than an oxidative addition pathway for the C–H bond activation step. The calculated functionalization step involves an Ir( v ) species that is the result of oxidative addition of acetate hypoiodite that is generated in situ from N -iodosuccinimide and acetic acid.
more »
« less
- Award ID(s):
- 1664973
- PAR ID:
- 10157011
- Date Published:
- Journal Name:
- Dalton Transactions
- ISSN:
- 1477-9226
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A versatile Rh( i )-catalyzed C6-selective decarbonylative C–H alkenylation of 2-pyridones with readily available, and inexpensive alkenyl carboxylic acids has been developed. This directed dehydrogenative cross-coupling reaction affords 6-alkenylated 2-pyridones that would otherwise be difficult to access using conventional C–H functionalization protocols. The reaction occurs with high efficiency and is tolerant of a broad range of functional groups. A wide scope of alkenyl carboxylic acids, including challenging conjugated polyene carboxylic acids, are amenable to this transformation and no addition of external oxidant is required. Mechanistic studies revealed that (1) Boc 2 O acts as the activator for the in situ transformation of the carboxylic acids into anhydrides before oxidative addition by the Rh catalyst, (2) a decarbonylation step is involved in the catalytic cycle, and (3) the C–H bond cleavage is likely the turnover-limiting step.more » « less
-
The first catalytic application of a CCC-NHC pincer Ir (III) dimer complex for the C – H functionalization of N-methylindoles with a-aryl-a-diazoacetates at the C-3 position is reported herein. The Ir pincer dimer complex was used as a catalyst at 3 mol% loading. The best reaction conditions involved a combination of catalyst and substrates in a specific order. It resulted in the activation of the C–H bond with the formation of a new C–C bond to generate a-aryl-a-indolyl acetates with more than 99% conversion at room temperature without requiring any additives. Isolated yields of 84–97% were obtained for a range of substrates. Under these catalytic conditions, the unprotected N–H indoles did not react with a-aryl-a-diazoacetate. These catalytic conditions provided an efficient synthetic route to the synthesis of a-aryl-a-indolyl acetates.more » « less
-
Herein we report the direct observation of C–H bond activation at an isolated mononuclear Pd( iii ) center. The oxidation of the Pd( ii ) complex ( Me N4)Pd II (neophyl)Cl (neophyl = –CH 2 C(CH 3 ) 2 Ph; Me N4 = N , N ′-dimethyl-2,11-diaza[3.3](2,6)pyridinophane) using the mild oxidant ferrocenium hexafluorophosphate (FcPF 6 ) yields the stable Pd( iii ) complex [( Me N4)Pd III (neophyl)Cl]PF 6 . Upon the addition of an acetate source, [( Me N4)Pd III (neophyl)Cl]PF 6 undergoes Csp 2 –H bond activation to yield the cyclometalated product [( Me N4)Pd III (cycloneophyl)]PF 6 . This metalacycle can be independently prepared, allowing for a complete characterization of both the starting and final Pd( iii ) complexes. The C–H activation step can be monitored directly by EPR and UV-Vis spectroscopies, and kinetic isotope effect (KIE) studies suggest that either a pre-association step such as an agostic interaction may be rate limiting, or that the C–H activation is partially rate-limiting in conjunction with ligand rearrangement. Density functional theory calculations support that the reaction proceeds through a κ 3 ligand coordination and that the flexible ligand structure is important for this transformation. Overall, this study represents the first example of discrete C–H bond activation occurring at a Pd( iii ) center through a concerted metalation–deprotonation mechanism, akin to that observed for Pd( ii ) and Pd( iv ) centers.more » « less
-
Key mechanistic features of the cobalt-mediated and aminoquinoline-directed dehydrogenative aryl–aryl coupling were investigated computationally and experimentally. A series of Co II and Co III complexes relevant to the proposed reaction cycle have been synthesized and characterized. Stoichiometric reactions and electrochemical studies were used to probe the role of different additives in the reaction pathway. Computationally, three different mechanisms, such as charge neutral , anionic , and dimetallic were explored. It is shown that the mono-metallic anionic and charge neutral mechanisms are the most favorable ones, among which the former mechanism is slightly more encouraging and proceeds via the: (a) concerted-metalation-deprotonation (CMD) of the first benzamide C–H bond, (b) PivOH-to-PivO − rearrangement, (c) CMD of the second benzamide C–H bond, (d) C–C coupling, (e) product formation facilitated by the amide nitrogen re-protonation, and (f) catalyst regeneration. The rate-determining step of this multi-step process is the C–C coupling step. The computational studies suggest that the electronics of both the aryl-benzamide and pyridine fragments of the aminoquinoline-benzamide ligand control the efficiency of the reaction.more » « less
An official website of the United States government

