 Award ID(s):
 1934745
 Publication Date:
 NSFPAR ID:
 10157043
 Journal Name:
 FineGrained Explanations Using Markov LogicMachine Learning and Knowledge Discovery in Databases
 Volume:
 11907
 Sponsoring Org:
 National Science Foundation
More Like this

Statistical relational learning models are powerful tools that combine ideas from firstorder logic with probabilistic graphical models to represent complex dependencies. Despite their success in encoding large problems with a compact set of weighted rules, performing inference over these models is often challenging. In this paper, we show how to effectively combine two powerful ideas for scaling inference for large graphical models. The first idea, lifted inference, is a wellstudied approach to speeding up inference in graphical models by exploiting symmetries in the underlying problem. The second idea is to frame Maximum a posteriori (MAP) inference as a convex optimization problem and use alternating direction method of multipliers (ADMM) to solve the problem in parallel. A wellstudied relaxation to the combinatorial optimization problem defined for logical Markov random fields gives rise to a hingeloss Markov random field (HLMRF) for which MAP inference is a convex optimization problem. We show how the formalism introduced for coloring weighted bipartite graphs using a color refinement algorithm can be integrated with the ADMM optimization technique to take advantage of the sparse dependency structures of HLMRFs. Our proposed approach, lifted hingeloss Markov random fields (LHLMRFs), preserves the structure of the original problem after lifting andmore »

Using unreliable information sources generating conflicting evidence may lead to a large uncertainty, which significantly hurts the decision making process. Recently, many approaches have been taken to integrate conflicting data from multiple sources and/or fusing conflicting opinions from different entities. To explicitly deal with uncertainty, a belief model called Subjective Logic (SL), as a variant of DumpsterShafer Theory, has been proposed to represent subjective opinions and to merge multiple opinions by offering a rich volume of fusing operators, which have been used to solve many opinion inference problems in trust networks. However, the operators of SL are known to be lack of scalability in inferring unknown opinions from large network data as a result of the sequential procedures of merging multiple opinions. In addition, SL does not consider deriving opinions in the presence of conflicting evidence. In this work, we propose a hybrid inference method that combines SL and Probabilistic Soft Logic (PSL), namely, Collective Subjective Plus, CSL + , which is resistible to highly conflicting evidence or a lack of evidence. PSL can reason a belief in a collective manner to deal with largescale network data, allowing high scalability based on relationships between opinions. However, PSL does not considermore »

Abstract Reasoning, our ability to solve novel problems, has been shown to improve as a result of learning experiences. However, the underlying mechanisms of change in this highlevel cognitive ability are unclear. We hypothesized that possible mechanisms include improvements in the encoding, maintenance, and/or integration of relations among mental representations – i.e., relational thinking. Here, we developed several eye gaze metrics to pinpoint learning mechanisms that underpin improved reasoning performance. We collected behavioral and eyetracking data from young adults who participated in a Law School Admission Test preparation course involving wordbased reasoning problems or reading comprehension. The Reasoning group improved more than the Comprehension group on a composite measure of four visuospatial reasoning assessments. Both groups improved similarly on an eyetracking paradigm involving transitive inference problems, exhibiting faster response times while maintaining high accuracy levels; nevertheless, the Reasoning group exhibited a larger change than the Comprehension group on an ocular metric of relational thinking. Across the full sample, individual differences in response time reductions were associated with increased efficiency of relational thinking. Accounting for changes in visual search and a more specific measure of relational integration improved the prediction accuracy of the model, but changes in these two processes alonemore »

Abstract Statistical relational learning (SRL) frameworks are effective at defining probabilistic models over complex relational data. They often use weighted firstorder logical rules where the weights of the rules govern probabilistic interactions and are usually learned from data. Existing weight learning approaches typically attempt to learn a set of weights that maximizes some function of data likelihood; however, this does not always translate to optimal performance on a desired domain metric, such as accuracy or F1 score. In this paper, we introduce a taxonomy of searchbased weight learning approaches for SRL frameworks that directly optimize weights on a chosen domain performance metric. To effectively apply these searchbased approaches, we introduce a novel projection, referred to as scaled space (SS), that is an accurate representation of the true weight space. We show that SS removes redundancies in the weight space and captures the semantic distance between the possible weight configurations. In order to improve the efficiency of search, we also introduce an approximation of SS which simplifies the process of sampling weight configurations. We demonstrate these approaches on two stateoftheart SRL frameworks: Markov logic networks and probabilistic soft logic. We perform empirical evaluation on five realworld datasets and evaluate them eachmore »

Recent literature focuses on utilizing the entity information in the sentencelevel relation extraction (RE), but this risks leaking superficial and spurious clues of relations. As a result, RE still suffers from unintended entity bias, i.e., the spurious correlation between entity mentions (names) and relations. Entity bias can mislead the RE models to extract the relations that do not exist in the text. To combat this issue, some previous work masks the entity mentions to prevent the RE models from overfitting entity mentions. However, this strategy degrades the RE performance because it loses the semantic information of entities. In this paper, we propose the CoRE (Counterfactual Analysis based Relation Extraction) debiasing method that guides the RE models to focus on the main effects of textual context without losing the entity information. We first construct a causal graph for RE, which models the dependencies between variables in RE models. Then, we propose to conduct counterfactual analysis on our causal graph to distill and mitigate the entity bias, that captures the causal effects of specific entity mentions in each instance. Note that our CoRE method is modelagnostic to debias existing RE systems during inference without changing their training processes. Extensive experimental results demonstratemore »