Abstract We draw from 70 in-depth interviews with White southerners to examine their memories of and experiences with learning about race and whiteness. Our emphasis is on place and how it shapes Whites’ racial learning. To date, most research on racial learning centers ethno-racial minority children and their families and emphasizes when racial learning occurs. Less attention is paid to where it takes place. To remedy this, we center Southern kinds of places - those places and the social scenes within them that reflect, extend, and challenge dominant ideas about race and region. We examine three specific scenes - southern homes, southern schools, and southern college campuses - to illustrate how each shapes the racial lessons Whites receive. By bringing into focus the places White southerners draw upon when making sense of race, our research offers an important contribution to our understanding of whiteness and its transmission.
more »
« less
Response to Comment on “Eocene Fagaceae from Patagonia and Gondwanan legacy in Asian rainforests”
Denk et al . agree that we reported the first fossil Fagaceae from the Southern Hemisphere. We appreciate their general enthusiasm for our findings, but we reject their critiques, which we find misleading and biased. The new fossils unequivocally belong to Castanopsis , and substantial evidence supports our Southern Route to Asia hypothesis.
more »
« less
- PAR ID:
- 10157068
- Date Published:
- Journal Name:
- Science
- Volume:
- 366
- Issue:
- 6467
- ISSN:
- 0036-8075
- Page Range / eLocation ID:
- eaaz2297
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract. Global- and basin-scale ocean reanalyses are becoming easily accessible and are utilized widely to study the Southern Ocean. However, such ocean reanalyses are optimized to achieve the best model–data agreement for their entire model domains and their ability to simulate the Southern Ocean requires investigation. Here, we compare several ocean reanalyses (ECCOv4r5, ECCO LLC270, B-SOSE, and GECCO3) based on the Massachusetts Institute of Technology General Circulation Model (MITgcm) for the Southern Ocean. For the open ocean, the simulated time-mean hydrography and ocean circulation are similar to observations. The MITgcm-based ocean reanalyses show Antarctic Circumpolar Current (ACC) levels measuring approximately 149 ± 11 Sv. The simulated 2 °C isotherms are located in positions similar to the ACC and roughly represent the southern extent of the current. Simulated Weddell Gyre and Ross Gyre strengths are 51 ± 11 and 25 ± 8 Sv, respectively, which is consistent with observation-based estimates. However, our evaluation finds that the time evolution of the Southern Ocean is not well simulated in these ocean reanalyses. While observations showed little change in open-ocean properties in the Weddell and Ross gyres, all simulations showed larger trends, most of which are excessive warming. For the continental shelf region, all reanalyses are unable to reproduce observed hydrographic features, suggesting that the simulated physics determining on-shelf hydrography and circulation is not well represented. Nevertheless, ocean reanalyses are valuable resources and can be used for generating ocean lateral boundary conditions for regional high-resolution simulations. We recommend that future users of these ocean reanalyses pay extra attention if their studies target open-ocean Southern Ocean temporal changes or on-shelf processes.more » « less
-
Abstract The Patagonia Icefields (PIF) are the largest non-polar ice mass in the southern hemisphere. The icefields cover an area of approximately 16,500 km 2 and are divided into the northern and southern icefields, which are ~ 4000 km 2 and ~ 12,500 km 2 , respectively. While both icefields have been losing mass rapidly, their responsiveness to various climate drivers, such as the El Niño-Southern Oscillation, is not well understood. Using the elastic response of the earth to loading changes and continuous GPS data we separated and estimated ice mass changes observed during the strong El Niño that started in 2015 from the complex hydrological interactions occurring around the PIF. During this single event, our mass balance estimates show that the northern icefield lost ~ 28 Gt of mass while the southern icefield lost ~ 12 Gt. This is the largest ice loss event in the PIF observed to date using geodetic data.more » « less
-
Climatic variability across a large fraction of the Southern Hemisphere is controlled by the Southern Annular Mode and associated latitudinal shifts in the Southern Westerly Wind belt. In Patagonia, these changes control the large-scale temperature and precipitation trends – and resulting glacier surface mass balance. Our understanding of recent changes in this climatic oscillation is, however, limited by the number of paleo-environmental records in the mid to high-latitude Southern Hemisphere. Here, we first use a synthetic proxy record to demonstrate that periodicity may be preserved in a wider range of records than can be used for quantitative paleoclimatic reconstructions. We then analyze a 5000-year-long sedimentation record derived from Lago Argentino, a 1500 km2 ice-contact lake in Southern Patagonia. We extract a mass accumulation rate and greyscale pixel intensity record from 28 cores across all of Lago Argentino's main depositional environments. We align the mass accumulation rate and pixel intensity records to a common time axis through multivariate dynamic-time-warping, and investigate their spectral properties using the multi-taper Lomb Scargle periodogram. We find statistically significant spectral peaks at 200 ± 20, 150 ± 16, and 85 ± 9 years in two thirds of mass accumulation rate and one third of the pixel intensity records. These periodicities reveal the centennial periodicity of the Southern Annular Mode, which is the key climatic driver of sedimentation at Lago Argentino.more » « less
-
Although deer mice (Peromyscus spp.) are among the most studied small mammals, their species diversity and phylogenetic relationships remain unclear. The lack of taxonomic clarity is mainly due to a conservative morphology and because some taxa are rare, have restricted distributions, or are poorly sampled. One taxon, P. mexicanus, includes southern Mexican subspecies that have not had their systematic placement tested with genetic data. We analyzed the phylogenetic relationships and genetic structure of P. mexicanus populations using sequences of the mitochondrial gene cytochrome b. We inferred that P. mexicanus is paraphyletic, with P. m. teapensis, P. m. tehuantepecus, andP. m. totontepecus more closely related to P. gymnotis than to P. m. mexicanus. This highly divergent clade ranges from northeastern Oaxaca to northern Chiapas, including southern Veracruz, and southern Tabasco. In light of this group’s mitochondrial distinctiveness, cohesive geographic range, and previously reported molecular, biochemical, and morphological differences, we recommend it be treated as P. totontepecus. Our findings demonstrate the need for an improved understanding of the diversity and evolutionary history of these common and abundant members of North American small mammal communities.more » « less
An official website of the United States government

