skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Landau Equation with the Specular Reflection Boundary Condition.
The existence and stability of the Landau equation (1936) in a general bounded domain with a physical boundary condition is a long-outstanding open problem. This work proves the global stability of the Landau equation with the Coulombic potential in a general smooth bounded domain with the specular reflection boundary condition for initial perturbations of the Maxwellian equilibrium states. The highlight of this work also comes from the low-regularity assumptions made for the initial distribution. This work generalizes the recent global stability result for the Landau equation in a periodic box (Kim et al. in Peking Math J, 2020). Our methods consist of the generalization of the wellposedness theory for the Fokker–Planck equation (Hwang et al. SIAM J Math Anal 50(2):2194–2232, 2018; Hwang et al. Arch Ration Mech Anal 214(1):183–233, 2014) and the extension of the boundary value problem to a whole space problem, as well as the use of a recent extension of De Giorgi–Nash–Moser theory for the kinetic Fokker–Planck equations (Golse et al. Ann Sc Norm Super Pisa Cl Sci 19(1):253–295, 2019) and the Morrey estimates (Bramanti et al. J Math Anal Appl 200(2):332–354, 1996) to further control the velocity derivatives, which ensures the uniqueness. Our methods provide a new understanding of the grazing collisions in the Landau theory for an initial-boundary value problem.  more » « less
Award ID(s):
1810868
PAR ID:
10157273
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Archive for Rational Mechanics and Analysis
Volume:
236
Issue:
3
Page Range / eLocation ID:
1389–1454
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We establish existence of finite energy weak solutions to the kinetic Fokker-Planck equation and the linear Landau equation near Maxwellian, in the presence of specular reflection boundary condition for general domains. Moreover, by using a method of reflection and the \begin{document}$$ S_p $$\end{document} estimate of [7], we prove regularity in the kinetic Sobolev spaces \begin{document}$$ S_p $$\end{document} and anisotropic Hölder spaces for such weak solutions. Such \begin{document}$$ S_p $$\end{document} regularity leads to the uniqueness of weak solutions. 
    more » « less
  2. The goal of this article is twofold. First, we investigate the linearized Vlasov–Poisson system around a family of spatially homogeneous equilibria in the unconfined setting. Our analysis follows classical strategies from physics (Binney and Tremaine 2008, Galactic Dynamics,(Princeton University Press); Landau 1946, Acad. Sci. USSR. J. Phys.10,25–34; Penrose 1960,Phys. Fluids,3,258–65) and their subsequent mathematical extensions (Bedrossian et al 2022, SIAM J. Math. Anal.,54,4379–406; Degond 1986,Trans. Am. Math. Soc., 294,435–53; Glassey and Schaeffer 1994,Transp. Theory Stat. Phys.,23, 411–53; Grenier et al 2021, Math. Res. Lett., 28,1679–702; Han-Kwan et al, 2021, Commun. Math. Phys. 387, 1405–40; Mouhot and Villani 2011, Acta Math., 207, 29–201). The main novelties are a unified treatment of a broad class of analytic equilibria and the study of a class of generalized Poisson equilibria. For the former, this provides a detailed description of the associated Green’s functions, including in particular precise dissipation rates (which appear to be new), whereas for the latter we exhibit explicit formulas. Second, we review the main result and ideas in our recent work (Ionescu et al, 2022 on the full global nonlinear asymptotic stability of the Poisson equilibrium in R3 
    more » « less
  3. Abstract In this paper, we study the superconvergence of the semi-discrete discontinuous Galerkin (DG) method for linear hyperbolic equations in one spatial dimension. The asymptotic errors in cell averages, downwind point values, and the postprocessed solution are derived for the initial discretization by Gaussian projection (for periodic boundary condition) or Cao projection Cao et al. (SIAM J. Numer. Anal.5, 2555–2573 (2014)) (for Dirichlet boundary condition). We proved that the error constant in the superconvergence of order$$2k+1$$ 2 k + 1 for DG methods based on upwind-biased fluxes depends on the parity of the orderk. The asymptotic errors are demonstrated by various numerical experiments for scalar and vector hyperbolic equations. 
    more » « less
  4. Abstract Regularity and singularity of the solutions according to the shape of domains is a challenging research theme in the Boltzmann theory. In this paper, we prove an Hölder regularity in for the Boltzmann equation of the hard‐sphere molecule, which undergoes the elastic reflection in the intermolecular collision and the contact with the boundary of a convex obstacle. In particular, this Hölder regularity result is a stark contrast to the case of other physical boundary conditions (such as the diffuse reflection boundary condition and in‐flow boundary condition), for which the solutions of the Boltzmann equation develop discontinuity in a codimension 1 subset (Kim [Comm. Math. Phys. 308 (2011)]), and therefore the best possible regularity is BV, which has been proved by Guo et al. [Arch. Rational Mech. Anal. 220 (2016)]. 
    more » « less
  5. We obtain local Holder continuity estimates up to the boundary for a kinetic Fokker-Planck equation with rough coefficients, with the prescribed influx boundary condition. Our result extends some recent developments that incorporate De Giorgi methods to kinetic Fokker-Planck equations. We also obtain higher order asymptotic estimates near the incoming part of the boundary. In particular, when the equation has a zero boundary conditions and no source term, we prove that the solution vanishes at infinite order on the incoming part of the boundary. 
    more » « less