 NSFPAR ID:
 10231281
 Date Published:
 Journal Name:
 Stochastic Systems
 Volume:
 10
 Issue:
 3
 ISSN:
 19465238
 Page Range / eLocation ID:
 251 to 273
 Format(s):
 Medium: X
 Sponsoring Org:
 National Science Foundation
More Like this

We consider a connectionlevel model proposed by Massoulié and Roberts for bandwidth sharing among file transfer flows in a communication network. We study weighted proportionally fair sharing policies and establish explicitform bounds on the weighted sum of the expected numbers of flows on different routes in heavy traffic. The bounds are linear in the number of critically loaded links in the network, and they hold for a class of phasetype filesize distributions; that is, the bounds are heavytraffic insensitive to the distributions in this class. Our approach is Lyapunov drift based, which is different from the widely used diffusion approximation approach. A key technique we develop is to construct a novel inner product in the state space, which then allows us to obtain a multiplicative type of statespace collapse in steady state. Furthermore, this statespace collapse result implies the interchange of limits as a byproduct for the diffusion approximation of the unweighted proportionally fair sharing policy under phasetype filesize distributions, demonstrating the heavytraffic insensitivity of the stationary distribution.more » « less

We consider the wellknown LiebLiniger (LL) model for
bosons interacting pairwise on the line via the\begin{document}$ N $\end{document} potential in the meanfield scaling regime. Assuming suitable asymptotic factorization of the initial wave functions and convergence of the microscopic energy per particle, we show that the timedependent reduced density matrices of the system converge in trace norm to the pure states given by the solution to the onedimensional cubic nonlinear Schrödinger equation (NLS) with an explict rate of convergence. In contrast to previous work [\begin{document}$ \delta $\end{document} 3 ] relying on the formalism of second quantization and coherent states and without an explicit rate, our proof is based on the counting method of Pickl [65 ,66 ,67 ] and Knowles and Pickl [44 ]. To overcome difficulties stemming from the singularity of the potential, we introduce a new shortrange approximation argument that exploits the Hölder continuity of the\begin{document}$ \delta $\end{document} body wave function in a single particle variable. By further exploiting the\begin{document}$ N $\end{document} subcritical wellposedness theory for the 1D cubic NLS, we can prove meanfield convergence when the limiting solution to the NLS has finite mass, but only for a very special class of\begin{document}$ L^2 $\end{document} body initial states.\begin{document}$ N $\end{document} 
We study the focusing NLS equation in $R\mathbb{R}^N$ in the masssupercritical and energysubcritical (or intercritical ) regime, with $H^1$ data at the massenergy threshold $\mathcal{ME}(u_0)=\mathcal{ME}(Q)$, where Q is the ground state. Previously, Duyckaerts–Merle studied the behavior of threshold solutions in the $H^1$critical case, in dimensions $N = 3, 4, 5$, later generalized by Li–Zhang for higher dimensions. In the intercritical case, Duyckaerts–Roudenko studied the threshold problem for the 3d cubic NLS equation. In this paper, we generalize the results of Duyckaerts–Roudenko for any dimension and any power of the nonlinearity for the entire intercritical range. We show the existence of special solutions, $Q^\pm$, besides the standing wave $e^{it}Q$, which exponentially approach the standing wave in the positive time direction, but differ in its behavior for negative time. We classify solutions at the threshold level, showing either blowup occurs in finite (positive and negative) time, or scattering in both time directions, or the solution is equal to one of the three special solutions above, up to symmetries. Our proof extends to the $H^1$critical case, thus, giving an alternative proof of the Li–Zhang result and unifying the critical and intercritical cases. These results are obtained by studying the linearized equation around the standing wave and some tailored approximate solutions to the NLS equation. We establish important decay properties of functions associated to the spectrum of the linearized Schrödinger operator, which, in combination with modulational stability and coercivity for the linearized operator on special subspaces, allows us to use a fixedpoint argument to show the existence of special solutions. Finally, we prove the uniqueness by studying exponentially decaying solutions to a sequence of linearized equations.more » « less

Droplet formation happens in finite time due to the surface tension force. The linear stability analysis is useful to estimate the size of a droplet but fails to approximate the shape of the droplet. This is due to a highly nonlinear flow description near the point where the first pinchoff happens. A onedimensional axisymmetric mathematical model was first developed by Eggers and Dupont [“Drop formation in a onedimensional approximation of the Navier–Stokes equation,” J. Fluid Mech. 262, 205–221 (1994)] using asymptotic analysis. This asymptotic approach to the Navier–Stokes equations leads to a universal scaling explaining the selfsimilar nature of the solution. Numerical models for the onedimensional model were developed using the finite difference [Eggers and Dupont, “Drop formation in a onedimensional approximation of the Navier–Stokes equation,” J. Fluid Mech. 262, 205–221 (1994)] and finite element method [Ambravaneswaran et al., “Drop formation from a capillary tube: Comparison of onedimensional and twodimensional analyses and occurrence of satellite drops,” Phys. Fluids 14, 2606–2621 (2002)]. The focus of this study is to provide a robust computational model for onedimensional axisymmetric droplet formation using the Portable, Extensible Toolkit for Scientific Computation. The code is verified using the Method of Manufactured Solutions and validated using previous experimental studies done by Zhang and Basaran [“An experimental study of dynamics of drop formation,” Phys. Fluids 7, 1184–1203 (1995)]. The present model is used for simulating pendant drops of water, glycerol, and paraffin wax, with an aspiration of extending the application to simulate more complex pinchoff phenomena.more » « less

This work is motivated by a longstanding interest in the long time behavior of flow‐structure interaction (FSI) PDE dynamics. We consider a linearized compressible flow structure interaction (FSI) PDE model with a view of analyzing the stability properties of both the compressible flow and plate solution components. In our earlier work, we gave an answer in the affirmative to question of uniform stability for finite energy solutions of said compressible flow‐structure system, by means of a “frequency domain” approach. However, the frequency domain method of proof in that work is not “robust” (insofar as we can see), when one wishes to study longtime behavior of solutions of compressible flow‐structure PDE models, which track the appearance of the ambient state onto the boundary interface. Nor is a frequency domain approach in this earlier work availing when one wishes to consider the dynamics, in long time, of solutions to physically relevant nonlinear versions of the compressible flow‐structure PDE system under present consideration (e.g., the Navier–Stokes nonlinearity in the PDE flow component or a nonlinearity of Berger/Von Karman type in the plate equation). Accordingly, in the present work, we operate in the time domain by way of obtaining the necessary energy estimates, which culminate in an alternative proof for the uniform stability of finite energy compressible flow‐structure solutions. Since there is a need to avoid steady states in our stability analysis, as a prerequisite result, we also show here that zero is an eigenvalue for the generators of flow‐structure systems, whether the material derivative term be absent or present. Moreover, we provide a clean characterization of the (one dimensional) zero eigenspace, with or without material derivative, under an appropriate assumption on the underlying ambient vector field.