skip to main content

Title: The importance of system configuration for distributed direct potable water reuse
Water and wastewater infrastructure worldwide faces unprecedented demand and supply conflicts that require unconventional solutions. In this study, we develop a novel modelling framework to assess the environmental and economic implications of a hybrid water supply system that supplements a centralized surface water supply with distributed direct potable reuse (DPR) of municipal wastewater, as a strategy to address such challenges. The model is tested with real water and wastewater systems data from the City of Houston, Texas. Results show that supplementing the conventional centralized water supply with distributed DPR would reduce water age in the drinking-water distribution network and hence improve water quality; properly designed system configurations attain system-wide net energy savings even with the high energy consumption of existing technologies used for advanced treatment of the wastewater. A target energy efficiency for future advanced treatment technologies is identified to achieve net energy saving with all hybrid system configurations. Furthermore, distributed DPR remains financially competitive compared with other unconventional water supply solutions. The modelling framework and associated databases developed in this study serve an important research need for quantitatively characterizing distributed and hybrid water systems, laying the necessary foundation for rational design of integrated urban water systems.
; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Nature Sustainability
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    It is widely acknowledged that distributed water systems (DWSs), which integrate distributed water supply and treatment with existing centralized infrastructure, can mitigate challenges to water security from extreme events, climate change, and aged infrastructure. However, it is unclear which are beneficial DWS configurations, i.e., where and at what scale to implement distributed water supply. We develop a mesoscale representation model that approximates DWSs with reduced backbone networks to enable efficient system emulation while preserving key physical realism. Moreover, system emulation allows us to build a multiobjective optimization model for computational policy search that addresses energy utilization and economic impacts. We demonstrate our models on a hypothetical DWS with distributed direct potable reuse (DPR) based on the City of Houston's water and wastewater infrastructure. The backbone DWS with greater thanlink and node reductions achieves satisfactory approximation of global flows and water pressures, to enable configuration optimization analysis. Results from the optimization model reveal case‐specific as well as general opportunities, constraints, and their interactions for DPR allocation. Implementing DPR can be beneficial in areas with high energy intensities of water distribution, considerable local water demands, and commensurate wastewater reuse capacities. The mesoscale modeling approach and the multiobjective optimization modelmore »developed in this study can serve as practical decision‐support tools for stakeholders to search for alternative DWS options in urban settings.

    « less
  2. Change to global climate, including both its progressive character and episodic extremes, constitutes a critical societal challenge. We apply here a framework to analyze Climate-induced Extremes on the Food, Energy, Water System Nexus (C-FEWS), with particular emphasis on the roles and sensitivities of traditionally-engineered (TEI) and nature-based (NBI) infrastructures. The rationale and technical specifications for the overall C-FEWS framework, its component models and supporting datasets are detailed in an accompanying paper (Vörösmarty et al., this issue). We report here on initial results produced by applying this framework in two important macro-regions of the United States (Northeast, NE; Midwest, MW), where major decisions affecting global food production, biofuels, energy security and pollution abatement require critical scientific support. We present the essential FEWS-related hypotheses that organize our work with an overview of the methodologies and experimental designs applied. We report on initial C-FEWS framework results using five emblematic studies that highlight how various combinations of climate sensitivities, TEI-NBI deployments, technology, and environmental management have determined regional FEWS performance over a historical time period (1980–2019). Despite their relative simplicity, these initial scenario experiments yielded important insights. We found that FEWS performance was impacted by climate stress, but the sensitivity was strongly modified bymore »technology choices applied to both ecosystems (e.g., cropland production using new cultivars) and engineered systems (e.g., thermoelectricity from different fuels and cooling types). We tabulated strong legacy effects stemming from decisions on managing NBI (e.g., multi-decade land conversions that limit long-term carbon sequestration). The framework also enabled us to reveal how broad-scale policies aimed at a particular net benefit can result in unintended and potentially negative consequences. For example, tradeoff modeling experiments identified the regional importance of TEI in the form wastewater treatment and NBI via aquatic self-purification. This finding, in turn, could be used to guide potential investments in point and/or non-point source water pollution control. Another example used a reduced complexity model to demonstrate a FEWS tradeoff in the context of water supply, electricity production, and thermal pollution. Such results demonstrated the importance of TEI and NBI in jointly determining historical FEWS performance, their vulnerabilities, and their resilience to extreme climate events. These infrastructures, plus technology and environmental management, constitute the “policy levers” which can actively be engaged to mitigate the challenge of contemporary and future climate change.« less
  3. Motivated by the increasing demand for flexible and sustainable routes of ammonia (NH3) production, the electrochemical nitrogen (N2) and nitrate reduction reaction (NRR and NO3RR) have attracted intense research interest in the past few years1,2. Compared to the centralized Haber-Bosch process that operates at elevated temperature and pressure, the electrochemical pathway features mild operating conditions but high input energy density, allowing for distributed and on-site generation of NH3 with water as the proton source, thereby reducing the transportation and storage costs of NH3 and H23. Besides N2 which is highly abundant in the atmosphere, nitrate-N exists widely in agricultural and industrial wastewaters, and its presence has raised severe concerns due to its known impacts on the environment and human health4,5. In this regard, NO3RR provides a promising strategy of simultaneously removing the harmful nitrate-N and generating NH3 as a useful product from those wastewater streams. While research activities on both NRR and NO3RR are blooming with substantial progress in the field of electrocatalysis, some major challenges remain unnoticed or unresolved so far. Due to the wide existence of reactive N-containing species in laboratory environments, the source of NH3 in NRR measurements is sometimes elusive and requires rigorous examination by controlmore »experiments with costly 15N26,7. On the other hand, while the electro-reduction of nitrate is much more facile, additional costs arising from the enrichment and purification of nitrate in contaminated waste resources have challenged the practical feasibility of NO3RR both technically and economically2. In this talk, we will present our latest research progress as part of the solutions to these challenges in state-of-the-art NRR and NO3RR studies, from the perspective of reactor design. By taking advantage of the prior developments in 15N2 control experiments, here we suggest an improved 15N2 circulation system that is effective and affordable for NRR research, allowing for more accurate and economized quantitative assessment of NH3 origins, so that false positives and subtle catalytic activities can be identified more reliably. For NO3RR, we developed a compact reactor system for rapid and efficient electrochemical conversion of nitrate to NH3 from real nitrate-containing waste sources, accompanied by the concurrent separation and enrichment of the produced NH3 in a trapping solution to yield pure ammonium compounds. Our work highlights the importance of advanced reactor design in N-related electrochemistry research, which will facilitate the transformation of the current N-centric chemical industries towards a sustainable future.« less
  4. Highlights Aquatic vegetation-based nutrient recovery offers an alternate approach for treating agricultural wastewater. Microalgae and duckweed can upcycle waste nutrients into valuable bio-based products. Producing feed, fertilizer, and fuel from manure-grown aquatic vegetation promotes a circular N-bioeconomy. Abstract . The massive amounts of nutrients that are currently released into the environment as waste have the potential to be recovered and transformed from a liability into an asset through photosynthesis, industry insight, and ecologically informed engineering design aimed at circularity. Fast-growing aquatic plant-like vegetation such as microalgae and duckweed have the capacity to enable local communities to simultaneously treat their own polluted water and retain nutrients that underlie the productivity of modern agriculture. Not only are they highly effective at upcycling waste nutrients into protein-rich biomass, microalgae and duckweed also offer excellent opportunities to substitute or complement conventional synthetic fertilizers, feedstocks in biorefineries, and livestock feed while simultaneously reducing the energy consumption and greenhouse gas emissions that would otherwise be required for their production and transport to farms. Integrated systems growing microalgae or duckweed on manure or agricultural runoff, and subsequent reuse of the harvested biomass to produce animal feed, soil amendments, and biofuels, present a sustainable approach to advancing circularitymore »in agricultural systems. This article provides a review of past efforts toward advancing the circular nitrogen bioeconomy using microalgae- and duckweed-based technologies to treat, recover, and upcycle nutrients from agricultural waste. The majority of the work with microalgae- and duckweed-based wastewater treatment has been concentrated on municipal and industrial effluents, with <50% of studies focusing on agricultural wastewater. In terms of scale, more than 91% of the microalgae-based studies and 58% of the duckweed-based studies were conducted at laboratory-scale. While the range of nutrient removals achieved using these technologies depends on various factors such as species, light, and media concentrations, 65% to 100% of total N, 82% to 100% of total P, 98% to 100% of NO3-, and 96% to 100% of NH3/NH4+ can be removed by treating wastewater with microalgae. For duckweed, removals of 75% to 98% total N, 81% to 93% total P, 72% to 98% NH3/NH4+, and 57% to 92% NO3- have been reported. Operating conditions such as hydraulic retention time, pH, temperature, and the presence of toxic nutrient levels and competing species in the media should be given due consideration when designing these systems to yield optimum benefits. In addition to in-depth studies and scientific advancements, policies encouraging supply chain development, market penetration, and consumer acceptance of these technologies are vitally needed to overcome challenges and to yield substantial socio-economic and environmental benefits from microalgae- and duckweed-based agricultural wastewater treatment. Keywords: Circular bioeconomy, Duckweed, Manure treatment, Microalgae, Nitrogen, Nutrient recycling, Wastewater treatment.« less
  5. The most common approach to air cooling of data centers involves the pressurization of the plenum beneath the raised floor and delivery of air flow to racks via perforated floor tiles. This cooling approach is thermodynamically inefficient due in large part to the pressure losses through the tiles. Furthermore, it is difficult to control flow at the aisle and rack level since the flow source is centralized rather than distributed. Distributed cooling systems are more closely coupled to the heat generating racks. In overhead cooling systems, one can distribute flow to distinct aisles by placing the air mover and water cooled heat exchanger directly above an aisle. Two arrangements are possible: (i.) placing the air mover and heat exchanger above the cold aisle and forcing downward flow of cooled air into the cold aisle (Overhead Downward Flow (ODF)), or (ii.) placing the air mover and heat exchanger above the hot aisle and forcing heated air upwards from the hot aisle through the water cooled heat exchanger (Overhead Upward Flow (OUF)). This study focuses on the steady and transient behavior of overhead cooling systems in both ODF and OUF configurations and compares their cooling effectiveness and energy efficiency. The flow andmore »heat transfer inside the servers and heat exchangers are modeled using physics based approaches that result in differential equation based mathematical descriptions. These models are programmed in the MATLAB™ language and embedded within a CFD computational environment (using the commercial code FLUENT™) that computes the steady or instantaneous airflow distribution. The complete computational model is able to simulate the complete flow and thermal field in the airside, the instantaneous temperatures within and pressure drops through the servers, and the instantaneous temperatures within and pressure drops through the overhead cooling system. Instantaneous overall energy consumption (1st Law) and exergy destruction (2nd Law) were used to quantify overall energy efficiency and to identify inefficiencies within the two systems. The server cooling effectiveness, based on an effectiveness-NTU model for the servers, was used to assess the cooling effectiveness of the two overhead cooling approaches« less