skip to main content


Title: Deep Hierarchical Knowledge Tracing
Knowledge tracing is an essential and challenging task in intelligent tutoring systems, whose goal is to estimate students’ knowledge state based on their responses to questions. Although many models for knowledge tracing task are developed, most of them depend on either concepts or items as input and ignore the hierarchical structure of items, which provides valuable information for the prediction of student learning results. In this paper, we propose a novel deep hierarchical knowledge tracing (DHKT) model exploiting the hierarchical structure of items. In the proposed DHKT model, the hierarchical relations between concepts and items are modeled by the hinge loss on the inner product between the learned concept embeddings and item embeddings. Then the learned embeddings are fed into a neural network to model the learning process of students, which is used to make predictions. The prediction loss and the hinge loss are minimized simultaneously during training process.  more » « less
Award ID(s):
1724889
NSF-PAR ID:
10157350
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the 12th International Conference on Educational Data Mining
Page Range / eLocation ID:
667-670
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The knowledge tracing (KT) task consists of predicting students’ future performance on instructional activities given their past performance. Recently, deep learning models used to solve this task yielded relative excellent prediction results relative to prior approaches. Despite this success, the majority of these models ignore relevant information that can be used to enhance the knowledge tracing performance. To overcome these limitations, we propose a generic framework that also accounts for the engagement level of students, the difficulty level of the instructional activities, and the natural language processing embeddings of the text of each concept. Furthermore, to capture the fact that students’ knowledge states evolve over time we employ a LSTM-based model. Then, we pass such sequences of knowledge states to a Temporal Convolutional Network to predict future performance. Several empirical experiments have been conducted to evaluate the effectiveness of our proposed framework for KT using Cognitive Tutor datasets. Experimental results showed the superior performance of our proposed model over many existing deep KT models. And AUC of 96.57% has been achieved on the Algebra 2006-2007 dataset. 
    more » « less
  2. null (Ed.)
    Knowledge Tracing (KT), which aims to model student knowledge level and predict their performance, is one of the most important applications of user modeling. Modern KT approaches model and maintain an up-to-date state of student knowledge over a set of course concepts according to students’ historical performance in attempting the problems. However, KT approaches were designed to model knowledge by observing relatively small problem-solving steps in Intelligent Tutoring Systems. While these approaches were applied successfully to model student knowledge by observing student solutions for simple problems, such as multiple-choice questions, they do not perform well for modeling complex problem solving in students. Most importantly, current models assume that all problem attempts are equally valuable in quantifying current student knowledge. However, for complex problems that involve many concepts at the same time, this assumption is deficient. It results in inaccurate knowledge states and unnecessary fluctuations in estimated student knowledge, especially if students guess the correct answer to a problem that they have not mastered all of its concepts or slip in answering the problem that they have already mastered all of its concepts. In this paper, we argue that not all attempts are equivalently important in discovering students’ knowledge state, and some attempts can be summarized together to better represent student performance. We propose a novel student knowledge tracing approach, Granular RAnk based TEnsor factorization (GRATE), that dynamically selects student attempts that can be aggregated while predicting students’ performance in problems and discovering the concepts presented in them. Our experiments on three real-world datasets demonstrate the improved performance of GRATE, compared to the state-of-the-art baselines, in the task of student performance prediction. Our further analysis shows that attempt aggregation eliminates the unnecessary fluctuations from students’ discovered knowledge states and helps in discovering complex latent concepts in the problems. 
    more » « less
  3. Abstract Motivation

    Despite experimental and curation efforts, the extent of enzyme promiscuity on substrates continues to be largely unexplored and under documented. Providing computational tools for the exploration of the enzyme–substrate interaction space can expedite experimentation and benefit applications such as constructing synthesis pathways for novel biomolecules, identifying products of metabolism on ingested compounds, and elucidating xenobiotic metabolism. Recommender systems (RS), which are currently unexplored for the enzyme–substrate interaction prediction problem, can be utilized to provide enzyme recommendations for substrates, and vice versa. The performance of Collaborative-Filtering (CF) RSs; however, hinges on the quality of embedding vectors of users and items (enzymes and substrates in our case). Importantly, enhancing CF embeddings with heterogeneous auxiliary data, specially relational data (e.g. hierarchical, pairwise or groupings), remains a challenge.

    Results

    We propose an innovative general RS framework, termed Boost-RS that enhances RS performance by ‘boosting’ embedding vectors through auxiliary data. Specifically, Boost-RS is trained and dynamically tuned on multiple relevant auxiliary learning tasks Boost-RS utilizes contrastive learning tasks to exploit relational data. To show the efficacy of Boost-RS for the enzyme–substrate prediction interaction problem, we apply the Boost-RS framework to several baseline CF models. We show that each of our auxiliary tasks boosts learning of the embedding vectors, and that contrastive learning using Boost-RS outperforms attribute concatenation and multi-label learning. We also show that Boost-RS outperforms similarity-based models. Ablation studies and visualization of learned representations highlight the importance of using contrastive learning on some of the auxiliary data in boosting the embedding vectors.

    Availability and implementation

    A Python implementation for Boost-RS is provided at https://github.com/HassounLab/Boost-RS. The enzyme-substrate interaction data is available from the KEGG database (https://www.genome.jp/kegg/).

     
    more » « less
  4. The process of synthesizing solutions for mathematical problems is cognitively complex. Students formulate and implement strate- gies to solve mathematical problems, develop solutions, and make connections between their learned concepts as they apply their reasoning skills to solve such problems. The gaps in student knowl- edge or shallowly-learned concepts may cause students to guess at answers or otherwise apply the wrong approach, resulting in errors in their solutions. Despite the complexity of the synthesis process in mathematics learning, teachers’ knowledge and ability to anticipate areas of potential difficulty is essential and correlated with student learning outcomes. Preemptively identifying the common miscon- ceptions in students that result in subsequent incorrect attempts can be arduous and unreliable, even for experienced teachers. This pa- per aims to help teachers identify the subsequent incorrect attempts that commonly occur when students are working on math problems such that they can address the underlying gaps in knowledge and common misconceptions through feedback. We report on a longi- tudinal analysis of historical data, from a computer-based learning platform, exploring the incorrect answers in the prior school years (’15-’20) that establish the commonality of wrong answers on two Open Educational Resources (OER) curricula–Illustrative Math (IM) and EngageNY (ENY) for grades 6, 7, and 8. We observe that incor- rect answers are pervasive across 5 academic years despite changes in underlying student and teacher population. Building on our find- ings regarding the Common Wrong Answers (CWAs), we report on goals and task analysis that we leveraged in designing and develop- ing a crowdsourcing platform for teachers to write Common Wrong Answer Feedback (CWAF) aimed are remediating the underlying cause of the CWAs. Finally, we report on an in vivo study by analyz- ing the effectiveness of CWAFs using two approaches; first, we use next-problem-correctness as a dependent measure after receiving CWAF in an intent-to-treat second, using next-attempt correctness as a dependent measure after receiving CWAF in a treated analysis. With the rise in popularity and usage of computer-based learning platforms, this paper explores the potential benefits of scalability in identifying CWAs and the subsequent usage of crowd-sourced CWAFs in enhancing the student learning experience through re- mediation. 
    more » « less
  5. Learning the dependency relations among entities and the hierarchy formed by these relations by mapping entities into some order embedding space can effectively enable several important applications, including knowledge base completion and prerequisite relations prediction. Nevertheless, it is very challenging to learn a good order embedding due to the existence of partial ordering and missing relations in the observed data. Moreover, most application scenarios do not provide non-trivial negative dependency relation instances. We therefore propose a framework that performs dependency relation prediction by exploring both rich semantic and hierarchical structure information in the data. In particular, we propose several negative sampling strategies based on graph-specific centrality properties, which supplement the positive dependency relations with appropriate negative samples to effectively learn order embeddings. This research not only addresses the needs of automatically recovering missing dependency relations, but also unravels dependencies among entities using several real-world datasets, such as course dependency hierarchy involving course prerequisite relations, job hierarchy in organizations, and paper citation hierarchy. Extensive experiments are conducted on both synthetic and real-world datasets to demonstrate the prediction accuracy as well as to gain insights using the learned order embedding. 
    more » « less