skip to main content


Title: A critical review of the application of electromagnetic fields for scaling control in water systems: mechanisms, characterization, and operation
Abstract

Scale deposits in water systems often result in ample technical and economic problems. Conventional chemical treatments for scale control are expensive and may cause health concerns and ecological implications. Non-chemical water treatment technologies such as electromagnetic field (EMF) are attractive options so the use of scale inhibitors, anti-scalants, or other chemical involved processes can be avoided or minimized. Although there are demonstrated beneficial effects of EMF on scale control, the scientific basis for its purported effectiveness is not clear in the available literature, especially lack of quantitative assessment and systematic evaluation of the effectiveness of EMF technologies. This review aims to elucidate the factors pertaining to EMF water treatment and their anti-scaling effects. We have critically reviewed relevant literature on EMF scale control, in particular recent studies, in various water systems, including desalination membranes, heat exchangers (e.g., cooling towers), water pipes, and bulk solutions. We systematically studied the impacts of operational conditions on EMF efficacy, and quantitatively evaluated the EMF improvement on scaling control. The scaling prevention mechanisms, conventional and cutting-edge characterization methods, and potential real-time monitoring techniques are summarized and discussed. The economic benefits of EMF treatment in terms of chemicals, operation and maintenance costs are highlighted. This review provides guidelines for future EMF system design and points out the research needed to further enhance EMF treatment performance.

 
more » « less
NSF-PAR ID:
10157495
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
npj Clean Water
Volume:
3
Issue:
1
ISSN:
2059-7037
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Highlights Aquatic vegetation-based nutrient recovery offers an alternate approach for treating agricultural wastewater. Microalgae and duckweed can upcycle waste nutrients into valuable bio-based products. Producing feed, fertilizer, and fuel from manure-grown aquatic vegetation promotes a circular N-bioeconomy. Abstract . The massive amounts of nutrients that are currently released into the environment as waste have the potential to be recovered and transformed from a liability into an asset through photosynthesis, industry insight, and ecologically informed engineering design aimed at circularity. Fast-growing aquatic plant-like vegetation such as microalgae and duckweed have the capacity to enable local communities to simultaneously treat their own polluted water and retain nutrients that underlie the productivity of modern agriculture. Not only are they highly effective at upcycling waste nutrients into protein-rich biomass, microalgae and duckweed also offer excellent opportunities to substitute or complement conventional synthetic fertilizers, feedstocks in biorefineries, and livestock feed while simultaneously reducing the energy consumption and greenhouse gas emissions that would otherwise be required for their production and transport to farms. Integrated systems growing microalgae or duckweed on manure or agricultural runoff, and subsequent reuse of the harvested biomass to produce animal feed, soil amendments, and biofuels, present a sustainable approach to advancing circularity in agricultural systems. This article provides a review of past efforts toward advancing the circular nitrogen bioeconomy using microalgae- and duckweed-based technologies to treat, recover, and upcycle nutrients from agricultural waste. The majority of the work with microalgae- and duckweed-based wastewater treatment has been concentrated on municipal and industrial effluents, with <50% of studies focusing on agricultural wastewater. In terms of scale, more than 91% of the microalgae-based studies and 58% of the duckweed-based studies were conducted at laboratory-scale. While the range of nutrient removals achieved using these technologies depends on various factors such as species, light, and media concentrations, 65% to 100% of total N, 82% to 100% of total P, 98% to 100% of NO3-, and 96% to 100% of NH3/NH4+ can be removed by treating wastewater with microalgae. For duckweed, removals of 75% to 98% total N, 81% to 93% total P, 72% to 98% NH3/NH4+, and 57% to 92% NO3- have been reported. Operating conditions such as hydraulic retention time, pH, temperature, and the presence of toxic nutrient levels and competing species in the media should be given due consideration when designing these systems to yield optimum benefits. In addition to in-depth studies and scientific advancements, policies encouraging supply chain development, market penetration, and consumer acceptance of these technologies are vitally needed to overcome challenges and to yield substantial socio-economic and environmental benefits from microalgae- and duckweed-based agricultural wastewater treatment. Keywords: Circular bioeconomy, Duckweed, Manure treatment, Microalgae, Nitrogen, Nutrient recycling, Wastewater treatment. 
    more » « less
  2. Abstract

    Essential for society to function, the production and consumption of food, energy, and water (FEW) are deeply intertwined, leading to calls for a nexus approach to understand and manage the complex tradeoffs and cascading effects. What research exists to date on this FEW nexus? How have scholars conceptualized these interactions at the urban scale? What are some promising approaches? Where are the research gaps? To answer these questions, we conducted a quantitative review of the academic literature on the FEW nexus (1399 publications) over more than four decades (1973–2017), followed by in-depth analysis of the most influential papers using an evaluation matrix that examined four components: 1) modeling approach; 2) scale; 3) nexus ‘trigger’; and 4) governance and policy. Scholars in the fields of environmental science predominated, while social science domains were under-represented. Most papers used quantitative rather than qualitative approaches, especially integrated assessment and systems dynamics modeling although spatial scale was generally recognized, explicit consideration of multi-scalar interactions was limited. Issues of institutional structure, governance, equity, resource access, and behavior were also underdeveloped. Bibliometric analysis of this literature revealed six distinct research communities, including a nascent urban FEW community. We replicated the analysis for this urban group, finding it to be just emerging (80% of papers have been published since 2010) and dominated by scholars in industrial ecology. These scholars focus on quantifying FEW flows of the urban metabolism in isolation rather than as a nexus, largely ignoring the political and socio-economic factors shaping these flows. We propose the urban FEW metabolism as a boundary object to draw in diverse scholarly and practitioner communities. This will advance research on complex FEW systems in four key areas: (1) integration of heterogeneous models and approaches; (2) scalar linkages between urban consumption and trans-boundary resource flows; (3) how actors and institutions shape resource access, distribution and use; and (4) co-production of knowledge with stakeholders.

     
    more » « less
  3. Abstract Practitioner points

    Combined (CSO) and sanitary sewer overflows (SSOs) pose both environmental and public health risks as untreated water is discharged into lakes and rivers during high‐intensity rain events.

    Current stand‐alone approaches for managing or treating CSOs focus on particulate BOD/COD and solids removal, and do not typically address soluble BOD or emerging contaminants in stormwater and wastewater (including pathogens).

    New wet weather policies and regulations encourage more holistic approaches by wastewater utilities, and future approaches should include a zero‐overflow goal for all CSOs and SSOs.

    To help achieve zero overflows, the concept of the “peaker facility” is proposed.

    Chemical oxidation may be an applicable component of peaker facilities for its short detention time and ability to remove, oxidize, or inactive water impairment‐causing contaminants.

     
    more » « less
  4. Abstract

    Microreactor-Assisted Nanomaterial Deposition (MAND) process offers unique capabilities in achieving large size and shape control levels while providing a more rapid path for scaling via process intensification for nanomaterial production. This review highlights the application of continuous flow microreactors to synthesize, assemble, transform, and deposit nanostructured materials for Solar Photovoltaics, the capabilities of MAND in the field, and the potential outlook of MAND.

    Microreactor-Assisted Nanomaterial Deposition (MAND) is a promising technology that synthesizes reactive fluxes and nanomaterials to deposit nanostructured materials at the point of use. MAND offers precise control over reaction, organization, and transformation processes to manufacture nanostructured materials with distinct morphologies, structures, and properties. In synthesis, microreactor technology offers large surface-area-to-volume ratios within microchannel structures to accelerate heat and mass transport. This accelerated transport allows for rapid changes in reaction temperatures and concentrations, leading to more uniform heating and mixing in the deposition process. The possibility of synthesizing nanomaterials in the required volumes at the point of application eliminates the need to store and transport potentially hazardous materials. Further, MAND provides new opportunities for tailoring novel nanostructures and nano-shaped features, opening the opportunity to assemble unique nanostructures and nanostructured thin films. MAND processes control the heat transfer, mass transfer, and reaction kinetics using well-defined microstructures of the active unit reactor cell that can be replicated at larger scales to produce higher chemical production volumes. This critical feature opens a promising avenue in developing scalable nanomanufacturing. This paper reviews advances in microreactor-assisted nanomaterial deposition of nanostructured materials for solar photovoltaics. The discussions review the use of microreactors to tailor the reacting flux, transporting to substrate surfaces via controlling process parameters such as flow rates, pH of the precursor solutions, and seed layers on the formation and/or transformation of intermediary reactive molecules, nanoclusters, nanoparticles, and structured assemblies. In the end, the review discusses the use of an industrial scale MAND to apply anti-reflective and anti-soiling coatings on the solar modules in the field and details future outlooks of MAND reactors.

    Graphical abstract

     
    more » « less
  5. Abstract Background

    The central thesis of plant ecology is that climate determines the global distribution of vegetation. Within a vegetation type, however, finer‐scale environmental features, such as the physical and chemical properties of soil (edaphic variation), control patterns of plant diversity and distributions.

    Aims

    Here, we review the literature to provide a mechanistic framework for the edaphic control of plant diversity. First, we review three examples where soils have known, prevalent effects on plant diversity: during soil formation, on unusual soils and in regions with high edaphic heterogeneity. Second, we synthesize how edaphic factors mediate the relative importance of the four key processes of community assembly (speciation, ecological drift, dispersal and niche selection). Third, we review the potential effects of climate change in edaphically heterogeneous regions. Finally, we outline key knowledge gaps for understanding the edaphic control of plant diversity. In our review, we emphasize floras of unusual edaphic areas (i.e., serpentine, limestone, granite), because these areas contribute disproportionately to the biodiversity hotspots of the world.

    Taxa

    Terrestrial plants.

    Location

    Global.

    Conclusion

    Edaphic variation is a key driver of biodiversity patterns and influences the relative importance of speciation, dispersal, ecological drift, niche selection and interactions among these processes. Research is still needed to gain a better understanding of the underlying mechanisms by which edaphic variation influences these community assembly processes, and unusual soils provide excellent natural systems for such tests. Furthermore, the incorporation of edaphic variation into climate change research will help to increase the predictive power of species distribution models, identify potential climate refugia and identify species with adaptations that buffer them from climate change.

     
    more » « less