skip to main content


Title: Cooling Effectiveness of a Data Center Room under Overhead Airflow via Entropy Generation Assessment in Transient Scenarios
Forecasting data center cooling demand remains a primary thermal management challenge in an increasingly larger global energy-consuming industry. This paper proposes a dynamic modeling approach to evaluate two different strategies for delivering cold air into a data center room. The common cooling method provides air through perforated floor tiles by means of a centralized distribution system, hindering flow management at the aisle level. We propose an idealized system such that five overhead heat exchangers are located above the aisle and handle the entire server cooling demand. In one case, the overhead heat exchangers force the airflow downwards into the aisle (Overhead Downward Flow (ODF)); in the other case, the flow is forced to move upwards (Overhead Upward Flow (OUF)). A complete fluid dynamic, heat transfer, and thermodynamic analysis is proposed to model the system’s thermal performance under both steady state and transient conditions. Inside the servers and heat exchangers, the flow and heat transfer processes are modeled using a set of differential equations solved in MATLAB™. This solution is coupled with ANSYS-Fluent™, which computes the three-dimensional velocity, temperature, and turbulence on the Airside. The two approaches proposed (ODF and OUF) are evaluated and compared by estimating their cooling effectiveness and the local Entropy Generation. The latter allows identifying the zones within the room responsible for increasing the inefficiencies (irreversibilities) of the system. Both approaches demonstrated similar performance, with a small advantage shown by OUF. The results of this investigation demonstrated a promising approach of data center on-demand cooling scenarios.  more » « less
Award ID(s):
1134810
NSF-PAR ID:
10157518
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Entropy
Volume:
21
Issue:
1
ISSN:
1099-4300
Page Range / eLocation ID:
98
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The most common approach to air cooling of data centers involves the pressurization of the plenum beneath the raised floor and delivery of air flow to racks via perforated floor tiles. This cooling approach is thermodynamically inefficient due in large part to the pressure losses through the tiles. Furthermore, it is difficult to control flow at the aisle and rack level since the flow source is centralized rather than distributed. Distributed cooling systems are more closely coupled to the heat generating racks. In overhead cooling systems, one can distribute flow to distinct aisles by placing the air mover and water cooled heat exchanger directly above an aisle. Two arrangements are possible: (i.) placing the air mover and heat exchanger above the cold aisle and forcing downward flow of cooled air into the cold aisle (Overhead Downward Flow (ODF)), or (ii.) placing the air mover and heat exchanger above the hot aisle and forcing heated air upwards from the hot aisle through the water cooled heat exchanger (Overhead Upward Flow (OUF)). This study focuses on the steady and transient behavior of overhead cooling systems in both ODF and OUF configurations and compares their cooling effectiveness and energy efficiency. The flow and heat transfer inside the servers and heat exchangers are modeled using physics based approaches that result in differential equation based mathematical descriptions. These models are programmed in the MATLAB™ language and embedded within a CFD computational environment (using the commercial code FLUENT™) that computes the steady or instantaneous airflow distribution. The complete computational model is able to simulate the complete flow and thermal field in the airside, the instantaneous temperatures within and pressure drops through the servers, and the instantaneous temperatures within and pressure drops through the overhead cooling system. Instantaneous overall energy consumption (1st Law) and exergy destruction (2nd Law) were used to quantify overall energy efficiency and to identify inefficiencies within the two systems. The server cooling effectiveness, based on an effectiveness-NTU model for the servers, was used to assess the cooling effectiveness of the two overhead cooling approaches 
    more » « less
  2. Data centers house a variety of compute, storage, network IT hardware where equipment reliability is of utmost importance. Heat generated by the IT equipment can substantially reduce its service life if Tjmax, maximum temperature that the microelectronic device tolerates to guarantee reliable operation, is exceeded. Hence, data center rooms are bound to maintain continuous conditioning of the cooling medium becoming large energy consumers. The objective of this work is to introduce and evaluate a new end-of-aisle cooling design which consists of three cooling configurations. The key objectives of close-coupled cooling are to enable a controlled cooling of the IT equipment, flexible as well as modular design, and containment of hot air exhaust from the cold air. The thermal performance of the proposed solution is evaluated using CFD modeling. A computational model of a small size data center room has been developed. Larger axial fans are selected and placed at rack-level which constitute the rack-fan wall design. The model consists of 10 electronic racks each dissipating a heat load of 8kw. The room is modeled to be hot aisle containment i.e. the hot air exhaust exiting for each row is contained and directed within a specific volume. Each rack has passive IT with no server fans and the servers are cooled by means of rack fan wall. The cold aisle is separated with hot aisle by means of banks of heat exchangers placed on the either sides of the aisle containment. Based on the placement of rack fans, the design is divided to three sub designs — case 1: passive heat exchangers with rack fan walls; case 2: active heat exchangers (HXs coupled with fans) with rack fan walls; case 3: active heat exchangers (hxs coupled with fans) with no rack fans. The cooling performance is calculated based on the thermal and flow parameters obtained for all three configurations. The computational data obtained has shown that the case 1 is used only for lower system resistance IT. However, case 2 and Case 3 can handle denser IT systems. Case 3 is the design that can consume lower fan energy as well as handle denser IT systems. The paper also discusses the cooling behavior of each type of design. 
    more » « less
  3. The objective of this work is to introduce and evaluate a new end-of-aisle cooling design which consists of three cooling configurations. The key objectives of close-coupled cooling are to enable controlled cooling of information technology (IT) equipment, flexible and modular design, and the containment of hot air exhaust from the cold air. The thermal performance of the proposed solution is evaluated using computational fluid dynamics modeling. A computational model of a small size data center room has been developed. The room is modeled to be a hot aisle containment setup, i.e., the hot air exhaust exiting for each row is contained and directed within a specific volume. The cold aisle is separated from the hot aisle by means of banks of heat exchangers (HXs) placed on either side of the containment aisle. Based on the placement of rack fans, the design is divided into three sub-designs—Case 1: passive HXs with rack fan walls; Case 2: active HXs (coupled with fans) with rack fan walls; Case 3: active HXs (coupled with fans) with no rack fans. The cooling performance is calculated based on the thermal and flow parameters obtained for all three configurations. The computational data obtained has shown that the Case 1 is used only for lower system resistance IT. However, Cases 2 and 3 can handle denser IT systems. Case 3 is the design that can consume lower fan energy and handle denser IT systems. The article also discusses the cooling behavior of each type of design under cooling failure conditions with Case 2 showing better cooling redundancy compared with other two cases. 
    more » « less
  4. Data Center hybrid air/liquid cooling systems such as rear door heat exchangers, overhead and in row cooling systems enable localized, on-demand cooling, or “smart cooling.” At the heart of all hybrid cooling systems is an air to liquid cross flow heat exchanger that regulates the amount of cooling delivered by the system by modulating the liquid or air flows and/or temperatures. Due the central role that the heat exchanger plays in the system response, understanding the transient response of the heat exchanger is crucial for the precise control of hybrid cooling system. This paper reports on the transient experimental characterization of heat exchangers used in data centers applications. An experimental rig designed to introduce controlled transient perturbations in temperature and flow on the inlet air and liquid flow streams of a 12 in. × 12 in. heat exchanger test core is discussed. The conditioned air is delivered to the test core by a suction wind tunnel with upstream air heaters and a frequency variable axial blower to allow the control of air flow rate and bulk temperature. The conditioned water is delivered to the test core by a water delivery system consisting of two separate water circuits, one delivering cold water, and the other hot water. By switching from one circuit to the other or mixing water from both circuits, the rig is capable of generating step, ramp and frequency perturbations in water temperature at constant flow or step, ramp or frequency perturbations in water flow at constant temperature or combinations of temperature and water flow perturbations. Experimental data are presented for a 12×12 heat exchanger core with a single liquid pass under different transient perturbations 
    more » « less
  5. The objective of this work is to introduce the application of an artificial neural network (ANN) to assist in the evaporative cooling in data centers. To achieve this task, we employ the neural network algorithms to predict weather conditions outside the data center for direct evaporative cooling (DEC) operations. The predictive analysis helps optimize the cooling control strategy for maximizing the usage of evaporative cooling thereby improving the efficiency of the overall data center cooling system. A typical artificial neural network architecture is dynamic in nature and can perform adaptive learning in minimal computation time. A neural network model of a data center was created using operational historical data collected from a data center cooling control system. The neural network model allows the control of the modular data center (MDC) cooling at optimum configuration in two ways. First way is that the network model minimizes time delay for switching the cooling from one mode to the other. Second way, it improves the reaction behavior of the cooling equipment if an unexpected ambient condition change should come. The data center in consideration is a test bed modular data center that comprises of information Technology (IT) racks, Direct Evaporative cooling (DEC) and Indirect Evaporative Cooling (IEC) modules; the DEC/IEC are used together or in alternative mode to cool the data center room. The facility essentially utilizes outside ambient temperature and humidity conditions that are further conditioned by the DEC and IEC to cool the electronics, a concept know as air-side economization. Various parameters are related to the cooling system operation such as outside air temperature, IT heat load, cold aisle temperature, cold aisle humidity etc. are considered. Some of these parameters are fed into the artificial neural network as inputs and some are set as targets to train the neural network system. After the training the process is completed, certain bucket of data is tested and further used to validate the outputs for various other weather conditions. To make sure the analysis represents real world scenario, the operational data used are from real time data logged on the MDC cooling control unit. Overall, the neural network model is trained and is used to successfully predict the weather conditions and cooling control parameters. The prediction models have been demonstrated for the outputs that are static in nature (Levenberg Marquardt method) as well as the outputs that are dynamic in nature i.e., step-ahead & multistep ahead techniques. 
    more » « less