skip to main content


Title: Supereruption quartz crystals and the hollow reentrants
Abstract Hollow reentrants in quartz phenocrysts from Yellowstone (western United States) caldera’s Lava Creek Tuff are preserved vestiges of bubbles in the supereruption’s pre-eruptive magma reservoir. We characterized the reentrants using a combination of petrographic techniques, synchrotron X-ray microtomography, and cathodoluminescence imagery. One or more reentrants occur in ∼20% of quartz, and up to ∼90% of those reentrants are hollow. The earliest-erupted parts of the Lava Creek Tuff have the most empty reentrants. The hollow reentrants provide direct, physical evidence for volatile saturation, exsolution, and retention in a magma reservoir. Quartz-melt surface tension permits bubbles to attach to quartz only when bubbles have been able to nucleate and grow in the melt. Prior to eruption, the Lava Creek Tuff existed as a bubbly, volatile-saturated magma reservoir. The exsolved volatiles increased magma compressibility, helping to prevent the ever-accumulating magma from reaching a critical, eruptive overpressure until it reached a tremendous volume.  more » « less
Award ID(s):
1724469
NSF-PAR ID:
10157612
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Geology
Volume:
47
Issue:
8
ISSN:
0091-7613
Page Range / eLocation ID:
710 to 714
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The Bishop Tuff (BT), erupted from the Long Valley caldera in California, displays two types of geochemical gradients with temperature: one is related to magma mixing, whereas the other is found in the high-SiO2 rhyolite portion of the Bishop Tuff and is characterized by twofold or lower concentration variations in minor and trace elements that are strongly correlated with temperature. It is proposed that the latter zonation, which preceded phenocryst growth, developed as a result of mineral–melt partitioning between interstitial melt and surrounding crystals in a parental mush, from which variable melt fractions were segregated. To test this hypothesis, trends of increasing vs decreasing element concentrations with temperature (as a proxy for melt fraction), obtained from published data on single-clast pumice samples from the high-SiO2 rhyolite portion of the Bishop Tuff, were used to infer their relative degrees of incompatibility vs compatibility between crystals and melt in the parental mush. Relative compatibility values (RCVi) for all elements i, defined as the concentration slope with temperature divided by average concentration, are shown to be linearly correlated with their respective bulk partition coefficients (bulk Di). Mineral–melt partition coefficients from the literature were used to constrain the average stoichiometry of the crystallization/melting reaction in the parental mush: 32 % quartz + 34 % plagioclase + 31 % K-feldspar + 1·60 % biotite + 0·42 % titanomagnetite + 0·34 % ilmenite + 0·093 % allanite + 0·024 % zircon + 0·025 % apatite = 100 % liquid. The proportions of tectosilicates in the reaction (i.e. location of eutectic) are consistent with depths of melt segregation of ~400–550 MPa and an activity of H2O of ~0·4–0·6. Temperatures of <770–780 °C are constrained by allanite in the reaction. Evidence that a fluid phase was present in the parental mush is seen in the decreasing versus increasing H2O and CO2 contents with temperature in the segregated interstitial melt that formed the high-SiO2 rhyolite portion of the Bishop Tuff. The presence of an excess fluid phase, which strongly partitions CO2 relative to the melt, is required to explain the compatible behavior of CO2, whereas the fluid abundance must have been low to explain the incompatible behavior of H2O. Calculated degassing paths for interstitial melts, which segregated from the parental mush and ascended to shallower depths to grow phenocrysts, match published volatile analyses in quartz-hosted melt inclusions and constrain fluid abundances in the mush to be ≤1 wt%. The source of volatiles in the parental mush, irrespective of whether it formed by crystallization or partial melting, must have been primarily from associated basalts, as granitoid crust is too volatile poor. Approximately twice as much basalt as rhyolite is needed to provide the requisite volatiles. The determination of bulk Di for several elements gives the bulk composition of the parental leucogranitic mush and shows that it is distinct from Mesozoic Sierran arc granitoids, as expected. Collectively, the results from this study provide new constraints for models of the complex, multi-stage processes throughout the Plio-Quaternary, involving both mantle-derived basalt and pre-existing crust, that led to the origin of the parental body to the Bishop Tuff. 
    more » « less
  2. null (Ed.)
    Abstract Dense, glassy pyroclasts found in products of explosive eruptions are commonly employed to investigate volcanic conduit processes through measurement of their volatile inventories. This approach rests upon the tacit assumption that the obsidian clasts are juvenile, that is, genetically related to the erupting magma. Pyroclastic deposits within the Yellowstone-Snake River Plain province almost without exception contain dense, glassy clasts, previously interpreted as hyaloclastite, while other lithologies, including crystallised rhyolite, are extremely rare. We investigate the origin of these dense, glassy clasts from a coupled geochemical and textural perspective combining literature data and case studies from Cougar Point Tuff XIII, Wolverine Creek Tuff, and Mesa Falls Tuff spanning 10 My of silicic volcanism. These results indicate that the trace elemental compositions of the dense glasses mostly overlap with the vesiculated component of each deposit, while being distinct from nearby units, thus indicating that dense glasses are juvenile. Textural complexity of the dense clasts varies across our examples. Cougar Point Tuff XIII contains a remarkable diversity of clast appearances with the same glass composition including obsidian-within-obsidian clasts. Mesa Falls Tuff contains clasts with the same glass compositions but with stark variations in phenocryst content (0 to 45%). Cumulatively, our results support a model where most dense, glassy clasts reflect conduit material that passed through multiple cycles of fracturing and sintering with concurrent mixing of glass and various crystal components. This is in contrast to previous interpretations of these clasts as entrained hyaloclastite and relaxes the requirement for water-magma interaction within the eruptive centres of the Yellowstone-Snake River Plain province. 
    more » « less
  3. Abstract

    Persistent volcanic activity is thought to be linked to degassing, but volatile transport at depth cannot be observed directly. Instead, we rely on indirect constraints, such as CO2‐H2O concentrations in melt inclusions trapped at different depth, but this data is rarely straight‐forward to interpret. In this study, we integrate a multiscale conduit‐flow model for non‐eruptive conditions and a volatile‐concentration model to compute synthetic profiles of volatile concentrations for different flow conditions and CO2fluxing. We find that actively segregating bubbles in the flow enhance the mixing of volatile‐poor and volatile‐rich magma in vertical conduit segments, even if the radius of these bubbles is several orders of magnitude smaller than the width of the conduit. This finding suggests that magma mixing is common in volcanic systems when magma viscosities are low enough to allow for bubble segregation as born out by our comparison with melt‐inclusion data: Our simulations show that even a small degree of mixing leads to volatile concentration profiles that are much more comparable to observations than either open‐ or closed‐system degassing trends for both Stromboli and Mount Erebus. Our results also show that two of the main processes affecting observed volatile concentrations, magma mixing and CO2fluxing, leave distinct observational signatures, suggesting that tracking them jointly could help better constrain changes in conduit flow. We argue that disaggregating melt‐inclusion data based on the eruptive behavior at the time could advance our understanding of how conduit flow changes with eruptive regimes.

     
    more » « less
  4. Abstract. Mount Somma–Vesuvius is a stratovolcano that represents a geological hazard to the population of the city of Naples and surrounding towns in southern Italy. Historically, volcanic eruptions at Mt. Somma–Vesuvius (SV) include high-magnitude Plinian eruptions, such as the infamous 79 CE eruption that occurred after 295 years of quiescence and killed thousands of people in Pompeii and surrounding towns and villages. The last eruption at SV was in 1944 and showed a Volcanic Explosivity Index (VEI) of 3 (0.01 km3 of volcanic material erupted). Following the 1944 eruption, SV has been dormant for the past nearly 79 years, with only minor fumarolic and seismic activity. During its long history, centuries of dormancy at SV have ended with Plinian eruptions (VEI 6) that signal the beginning of a new cycle of eruptive activity. Thus, the current dormancy stage demands a need to better understand the mechanism involved in high-magnitude eruptions in order to better predict future eruption magnitude and style. Despite centuries of research on the SV volcanic system, many questions remain, including the evolution of magmatic volatiles from deep primitive magmas to shallower more evolved magmas. Developing a better understanding of the physical and chemical processes associated with volatile evolution at SV can provide insights into magma dynamics and the mechanisms that trigger highly explosive eruptions at SV. In this study, we present new data for the pre-eruptive volatile contents of magmas associated with four Plinian and two inter-Plinian eruptions at SV based on analyses of reheated melt inclusions (MIs) hosted in olivine. We correct the volatile contents of bubble-bearing MIs by taking into account the volatile contents of bubbles in the MIs. We recognize two groups of MIs: one group hosted in high-Fo olivine (Fo85–90) and relatively rich in volatiles and the other group hosted in low-Fo olivine (Fo70–69) and relatively depleted in volatiles. The correlation between volatile contents and compositions of host olivines suggests that magma fractionation took place under volatile-saturated conditions and that more differentiated magmas reside at shallower levels relative to less evolved/quasi-primitive magmas. Using the CO2 contents of corrected MIs hosted in Fo90 olivine from SV, we estimate that 347 to 686 t d−1 of magmatic CO2 exsolved from SV magmas during the last 3 centuries (38–75 Mt in total) of volcanic activity. Although this study is limited to only few SV magmas, we suggest that further study applying similar methods could shed light on the apparent lack of correlation between the volatile contents of MIs and the style and age of eruptions. Further, such studies could provide additional constraints on the origin of CO2 and the interaction between the carbonate platform and ascending magmas below SV.

     
    more » « less
  5. Mildly explosive eruptions—the most frequent manifestations of subaerial explosive volcanism on Earth—broadly group into two styles: Strombolian and Hawaiian. The former is characterized by sequences of intermittent discrete explosions, and the latter by sustained pyroclastic fountaining. Explosive activity during the 2018 fissure eruption of Kīlauea volcano (Hawaiʻi) provided an exceptional opportunity to record a wide range of Strombolian and Hawaiian behavior. We used high-resolution videography and image processing to quantify the frequency, duration, and steadiness (as seen by fluctuation in maximum clast height) of Hawaiian fountains and Strombolian jets. Combining these data with the currently published understanding of two-phase flow (melt + bubbles), we propose that the diversity in eruptive styles is related to melt viscosity, changing mass flux, and the extent of mechanical coupling versus decoupling of the exsolving volatile phases from the host magma. In particular, we single out the effects of the contrasts in abundance of a sub-population of the largest (meter-scale) bubbles that emerge intermittently and independently through the magma in the vent.. The coexistence of these styles—at vents often only meters apart—is a clear indication that the diversity in eruptive behavior is modulated at depths of probably no more than 100 m and perhaps as shallow as tens of meters. 
    more » « less