skip to main content


Title: Sub-Hertz resonance by weak measurement
Weak measurement (WM) with state pre- and post-selection can amplify otherwise undetectable small signals and thus has potential in precision measurement applications. Although frequency measurements offer the hitherto highest precision due to the stable narrow atomic transitions, it remains a long-standing interest to develop new schemes to further escalate their performance. Here, we demonstrate a WM-enhanced correlation spectroscopy technique capable of narrowing the resonance linewidth down to 0.1 Hz in a room-temperature atomic vapour cell. The potential of this technique for precision measurement is demonstrated through weak magnetic-field sensing. By judiciously pre- and post-selecting frequency-modulated input and output optical states in a nearly orthogonal manner, a sensitivity of 7 fT Hz^(−1/2) at a low frequency near DC is achieved using only one laser beam with 15 µW of power. Additionally, our results extend the WM framework to a non-Hermitian Hamiltonian and shed new light on metrology and bio-magnetic field sensing.  more » « less
Award ID(s):
1806519 1741693
PAR ID:
10157674
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Nature communications
Volume:
11
ISSN:
2041-1723
Page Range / eLocation ID:
1752
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this work, we look to compare three methods of feedback for the ultimate purpose of measuring the transverse vector components of a magnetic field using a synchronous light-pulse atomic scalar magnetometer with a few tens of fT/Hz sensitivity in Earth-field-scale magnetic environments. By applying modulation in the magnetic field to orthogonal axes, the respective vector components may, in principle, be separated from the scalar measurement. Success of this technique depends in significant part on the ability to measure and respond to these perturbations with low measurement uncertainty. Using high-speed least-squares fitting, the phase response of the atomic spins relative to the first harmonic of the optical pump pulse repetition rate is monitored and correspondingly adjusted into resonance with the natural Larmor precession frequency. This paper seeks to motivate and compare three distinct methods of feedback for this purpose. As a first step toward the full development of this technique, the present work uses a simplified version with modulation applied only along the bias field. All three methods investigated herein are shown to provide results that match well with the scalar magnetometer measurements and to depend on both the applied modulation amplitude and optimal feedback response to achieve low relative uncertainty.

     
    more » « less
  2. Here we propose and demonstrate a novel weak-measurement-enhanced spectroscopy technique, which allows narrowing the resonance to 0.1 Hz and high sensitivity 7 fT/Hz^1/2 near DC in a room-temperature atomic-vapor cell, by designing a non-Hermitian Hamiltonian. 
    more » « less
  3. The integration of stabilized lasers, sources that generate spectrally pure light, will provide compact, low-cost solutions for applications including quantum information sciences, precision navigation and timing, metrology, and high-capacity fiber communications. We report a significant advancement in this field, demonstrating stabilization of an integrated waveguide Brillouin laser to an integrated waveguide reference cavity, where both resonators are fabricated using the same CMOS-compatible integration platform. We demonstrate reduction of the free running Brillouin laser linewidth to a 292 Hz integral linewidth and carrier stabilization to a 4.9 × 10 −13 fractional frequency at 8 ms reaching the cavity-intrinsic thermorefractive noise limit for frequencies down to 80 Hz. We achieve this level of performance using a pair of 56.4 × 10 6 quality factor Si 3 N 4 waveguide ring-resonators that reduce the high-frequency noise by the nonlinear Brillouin process and the low-frequency noise by Pound–Drever–Hall locking to the ultra-low loss resonator. These results represent an important step toward integrated stabilized lasers with reduced sensitivity to environmental disturbances for atomic, molecular, and optical physics (AMO), quantum information processing and sensing, and other precision scientific, sensing, and communications applications. 
    more » « less
  4. Abstract

    Computer vision‐based displacement measurement for structural monitoring has grown popular. However, tracking natural low‐contrast targets in low‐illumination conditions is inevitable for vision sensors in the field measurement, which poses challenges for intensity‐based vision‐sensing techniques. A new edge‐enhanced‐matching (EEM) technique improved from the previous orientation‐code‐matching (OCM) technique is proposed to enable robust tracking of low‐contrast features. Besides extracting gradient orientations from images as OCM, the proposed EEM technique also utilizes gradient magnitudes to identify and enhance subtle edge features to form EEM images. A ranked‐segmentation filtering technique is also developed to post‐process EEM images to make it easier to identify edge features. The robustness and accuracy of EEM in tracking low‐contrast features are validated in comparison with OCM in the field tests conducted on a railroad bridge and the long‐span Manhattan Bridge. Frequency domain analyses are also performed to further validate the displacement accuracy.

     
    more » « less
  5. We present a dual-comb interferometer capable of measuring both the range to a target as well as the target’s transverse rotation rate. Measurement of the transverse rotation of the target is achieved by preparing the probe comb with orbital angular momentum and measuring the resultant phase shift between interferograms, which arises from the rotational Doppler shift. The distance to the target is measured simultaneously by measuring the time-of-flight delay between the target and reference interferogram centerbursts. With 40 ms of averaging, we measure rotation rates up to 313 Hz with a precision reaching 1 Hz. Distances are measured with an ambiguity range of 75 cm and with a precision of 5.9 µm for rotating targets and 400 nm for a static target. This is the first dual-comb ranging system capable of measuring transverse rotation of a target. This technique has many potential terrestrial and space-based applications for lidar and remote sensing systems.

     
    more » « less