skip to main content


Title: Localization of binary black hole mergers with known inclination
ABSTRACT The localization of stellar-mass binary black hole mergers using gravitational waves is critical in understanding the properties of the binaries’ host galaxies, observing possible electromagnetic emission from the mergers, or using them as a cosmological distance ladder. The precision of this localization can be substantially increased with prior astrophysical information about the binary system. In particular, constraining the inclination of the binary can reduce the distance uncertainty of the source. Here, we present the first realistic set of localizations for binary black hole mergers, including different prior constraints on the binaries’ inclinations. We find that prior information on the inclination can reduce the localization volume by a factor of 3. We discuss two astrophysical scenarios of interest: (i) follow-up searches for beamed electromagnetic/neutrino counterparts and (ii) mergers in the accretion discs of active galactic nuclei.  more » « less
Award ID(s):
1715661 1708028
NSF-PAR ID:
10157783
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
488
Issue:
3
ISSN:
0035-8711
Page Range / eLocation ID:
4459 to 4463
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    Neutron star–black hole (NSBH) mergers detected in gravitational waves have the potential to shed light on supernova physics, the dense matter equation of state, and the astrophysical processes that power their potential electromagnetic counterparts. We use the population of four candidate NSBH events detected in gravitational waves so far with a false alarm rate ≤1 yr−1 to constrain the mass and spin distributions and multimessenger prospects of these systems. We find that the black holes in NSBHs are both less massive and have smaller dimensionless spins than those in black hole binaries. We also find evidence for a mass gap between the most massive neutron stars and least massive black holes in NSBHs at 98.6-per cent credibility. Using an approach driven by gravitational-wave data rather than binary simulations, we find that fewer than 14 per cent of NSBH mergers detectable in gravitational waves will have an electromagnetic counterpart. While the inferred presence of a mass gap and fraction of sources with a counterpart depend on the event selection and prior knowledge of source classification, the conclusion that the black holes in NSBHs have lower masses and smaller spin parameters than those in black hole binaries is robust. Finally, we propose a method for the multimessenger analysis of NSBH mergers based on the non-detection of an electromagnetic counterpart and conclude that, even in the most optimistic case, the constraints on the neutron star equation of state that can be obtained with multimessenger NSBH detections are not competitive with those from gravitational-wave measurements of tides in binary neutron star mergers and radio and X-ray pulsar observations.

     
    more » « less
  2. ABSTRACT

    Neutron stars in astrophysical binary systems represent exciting sources for multimessenger astrophysics. A potential source of electromagnetic transients from compact binary systems is the neutron star ocean, the external fluid layer encasing a neutron star. We present a groundwork study into tidal waves in neutron star oceans and their consequences. Specifically, we investigate how oscillation modes in neutron star oceans can be tidally excited during compact binary inspirals and parabolic encounters. We find that neutron star oceans can sustain tidal waves with frequencies between 0.01 and 20 Hz. Our results suggest that tidally resonant neutron star ocean waves may serve as a never-before studied source of precursor electromagnetic emission prior to neutron star–black hole and binary neutron star mergers. If accompanied by electromagnetic flares, tidally resonant neutron star ocean waves, whose energy budget can reach 1046 erg, may serve as early warning signs (≳1 min before merger) for compact binary mergers. Similarly, excited ocean tidal waves will coincide with neutron star parabolic encounters. Depending on the neutron star ocean model and a flare emission scenario, tidally resonant ocean flares may be detectable by Fermi and Nuclear Spectroscopic Telescope Array (NuSTAR) out to ≳100 Mpc with detection rates as high as ∼7 yr−1 for binary neutron stars and ∼0.6 yr−1 for neutron star–black hole binaries. Observations of emission from neutron star ocean tidal waves along with gravitational waves will provide insight into the equation of state at the neutron star surface, the composition of neutron star oceans and crusts, and neutron star geophysics.

     
    more » « less
  3. ABSTRACT

    The upcoming Laser Interferometer Space Antenna (LISA) is expected to detect gravitational waves (GWs) from massive black hole binaries (MBHB). Finding the electromagnetic (EM) counterparts for these GW events will be crucial for understanding how and where MBHBs merge, measuring their redshifts, constraining the Hubble constant and the graviton mass, and for other novel science applications. However, due to poor GW sky localization, multiwavelength, time-dependent EM models are needed to identify the right host galaxy. We studied merging MBHBs embedded in a circumbinary disc (CBD) using high-resolution two-dimensional simulations, with a Γ-law equation of state, incorporating viscous heating, shock heating, and radiative cooling. We simulate the binary from large separation until after merger, allowing us to model the decoupling of the binary from the CBD. We compute the EM signatures and identify distinct features before, during, and after the merger. Our main result is a multiband EM signature: we find that the MBHB produces strong thermal X-ray emission until 1–2 d prior to the merger. However, as the binary decouples from the CBD, the X-ray-bright minidiscs rapidly shrink in size, become disrupted, and the accretion rate drops precipitously. As a result, the thermal X-ray luminosity drops by orders of magnitude, and the source remains X-ray dark for several days, regardless of any post-merger effects such as GW recoil or mass-loss. Looking for the abrupt spectral change where the thermal X-ray disappears is a tell-tale EM signature of LISA mergers that does not require extensive pre-merger monitoring.

     
    more » « less
  4. Abstract Pulsar timing array (PTA) experiments are becoming increasingly sensitive to gravitational waves (GWs) in the nanohertz frequency range, where the main astrophysical sources are supermassive black hole binaries (SMBHBs), which are expected to form following galaxy mergers. Some of these individual SMBHBs may power active galactic nuclei, and thus their binary parameters could be obtained electromagnetically, which makes it possible to apply electromagnetic (EM) information to aid the search for a GW signal in PTA data. In this work, we investigate the effects of such an EM-informed search on binary detection and parameter estimation by performing mock data analyses on simulated PTA data sets. We find that by applying EM priors, the Bayes factor of some injected signals with originally marginal or sub-threshold detectability (i.e., Bayes factor ∼1) can increase by a factor of a few to an order of magnitude, and thus an EM-informed targeted search is able to find hints of a signal when an uninformed search fails to find any. Additionally, by combining EM and GW data, one can achieve an overall improvement in parameter estimation, regardless of the source’s sky location or GW frequency. We discuss the implications for the multi-messenger studies of SMBHBs with PTAs. 
    more » « less
  5. Abstract

    GWSkyNet-Multiis a machine learning model developed for the classification of candidate gravitational-wave events detected by the LIGO and Virgo observatories. The model uses limited information released in the low-latency Open Public Alerts to produce prediction scores indicating whether an event is a merger of two black holes (BHs), a merger involving a neutron star (NS), or a non-astrophysical glitch. This facilitates time-sensitive decisions about whether to perform electromagnetic follow-up of candidate events during LIGO-Virgo-KAGRA (LVK) observing runs. However, it is not well understood how the model is leveraging the limited information available to make its predictions. As a deep learning neural network, the inner workings of the model can be difficult to interpret, impacting our trust in its validity and robustness. We tackle this issue by systematically perturbing the model and its inputs to explain what underlying features and correlations it has learned for distinguishing the sources. We show that the localization area of the 2D sky maps and the computed coherence versus incoherence Bayes factors are used as strong predictors for distinguishing between real events and glitches. The estimated distance to the source is further used to discriminate between binary BH mergers and mergers involving NSs. We leverage these findings to show that events misclassified byGWSkyNet-Multiin LVK’s third observing run have distinct sky areas, coherence factors, and distance values that influence the predictions and explain these misclassifications. The results help identify the model’s limitations and inform potential avenues for further optimization.

     
    more » « less