skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Novel spectral-shaping building block: a narrowband Mach–Zehnder interferometer
We present an experimental demonstration of notch filters with arbitrary center wavelengths capable of tunable analog output power values varying between full extinction of 15 and 0 dB. Each filter is composed of highly modular apodized four-port Bragg add/drop filters to reduce the crosstalk between concatenated devices. The constructed photonic integrated circuit experimentally demonstrates spectra shaping using four independent notch filters. Each notch filter supports a bandwidth of 2    nm and is shown to be suitable for realization of programmable photonic integrated circuits.  more » « less
Award ID(s):
1901844 1640227 1807890 1704085 1707641
PAR ID:
10157913
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Photonics Research
Volume:
8
Issue:
6
ISSN:
2327-9125
Page Range / eLocation ID:
Article No. 1059
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This paper presents the first measurement of$$\psi {(2S)}$$ ψ ( 2 S ) and$$\chi _{c1}(3872)$$ χ c 1 ( 3872 ) meson production within fully reconstructed jets. Each quarkonium state (tag) is reconstructed via its decay to the$${{J \hspace{-1.66656pt}/\hspace{-1.111pt}\psi }} $$ J / ψ ($$\rightarrow $$ $$\mu ^+\mu ^-$$ μ + μ - )$$\pi ^+\pi ^-$$ π + π - final state in the forward region using proton-proton collision data collected by the LHCb experiment at the center-of-mass-energy of$$13\text {TeV} $$ 13 TeV in 2016, corresponding to an integrated luminosity of$$1.64\,\text {\,fb} ^{-1} $$ 1.64 \,fb - 1 . The fragmentation function, presented as the ratio of the quarkonium-tag transverse momentum to the full jet transverse momentum ($$p_{\textrm{T}} (\text {tag})/p_{\textrm{T}} (\text {jet})$$ p T ( tag ) / p T ( jet ) ), is measured differentially in$$p_{\textrm{T}} (\text {jet})$$ p T ( jet ) and$$p_{\textrm{T}} (\text {tag})$$ p T ( tag ) bins. The distributions are separated into promptly produced quarkonia from proton-proton collisions and quarkonia produced from displacedb-hadron decays. While the displaced quarkonia fragmentation functions are in general well described by parton-shower predictions, the prompt quarkonium distributions differ significantly from fixed-order non-relativistic QCD (NRQCD) predictions followed by a QCD parton shower. 
    more » « less
  2. Abstract A test of lepton flavor universality in B ± K ± μ + μ and B ± K ± e + e decays, as well as a measurement of differential and integrated branching fractions of a nonresonant B ± K ± μ + μ decay are presented. The analysis is made possible by a dedicated data set of proton-proton collisions at s = 13 TeV recorded in 2018, by the CMS experiment at the LHC, using a special high-rate data stream designed for collecting about 10 billion unbiased b hadron decays. The ratio of the branching fractions B ( B ± K ± μ + μ ) to B ( B ± K ± e + e ) is determined from the measured double ratio R ( K ) of these decays to the respective branching fractions of the B ± J / ψ K ± with J / ψ μ + μ and e + e decays, which allow for significant cancellation of systematic uncertainties. The ratio R ( K ) is measured in the range 1.1 < q 2 < 6.0 GeV 2 , whereqis the invariant mass of the lepton pair, and is found to be R ( K ) = 0.78 0.23 + 0.47 , in agreement with the standard model expectation R ( K ) 1 . This measurement is limited by the statistical precision of the electron channel. The integrated branching fraction in the sameq2range, B ( B ± K ± μ + μ ) = ( 12.42 ± 0.68 ) × 10 8 , is consistent with the present world-average value and has a comparable precision. 
    more » « less
  3. Abstract Using proton–proton collision data corresponding to an integrated luminosity of$$140\hbox { fb}^{-1}$$ 140 fb - 1 collected by the CMS experiment at$$\sqrt{s}= 13\,\text {Te}\hspace{-.08em}\text {V} $$ s = 13 Te V , the$${{{\Lambda }} _{\text {b}}^{{0}}} \rightarrow {{\text {J}/\uppsi }} {{{\Xi }} ^{{-}}} {{\text {K}} ^{{+}}} $$ Λ b 0 J / ψ Ξ - K + decay is observed for the first time, with a statistical significance exceeding 5 standard deviations. The relative branching fraction, with respect to the$${{{\Lambda }} _{\text {b}}^{{0}}} \rightarrow {{{\uppsi }} ({2\textrm{S}})} {{\Lambda }} $$ Λ b 0 ψ ( 2 S ) Λ decay, is measured to be$$\mathcal {B}({{{\Lambda }} _{\text {b}}^{{0}}} \rightarrow {{\text {J}/\uppsi }} {{{\Xi }} ^{{-}}} {{\text {K}} ^{{+}}} )/\mathcal {B}({{{\Lambda }} _{\text {b}}^{{0}}} \rightarrow {{{\uppsi }} ({2\textrm{S}})} {{\Lambda }} ) = [3.38\pm 1.02\pm 0.61\pm 0.03]\%$$ B ( Λ b 0 J / ψ Ξ - K + ) / B ( Λ b 0 ψ ( 2 S ) Λ ) = [ 3.38 ± 1.02 ± 0.61 ± 0.03 ] % , where the first uncertainty is statistical, the second is systematic, and the third is related to the uncertainties in$$\mathcal {B}({{{\uppsi }} ({2\textrm{S}})} \rightarrow {{\text {J}/\uppsi }} {{{\uppi }} ^{{+}}} {{{\uppi }} ^{{-}}} )$$ B ( ψ ( 2 S ) J / ψ π + π - ) and$$\mathcal {B}({{{\Xi }} ^{{-}}} \rightarrow {{\Lambda }} {{{\uppi }} ^{{-}}} )$$ B ( Ξ - Λ π - )
    more » « less
  4. Abstract The total charm-quark production cross section per unit of rapidity$$\textrm{d}\sigma ({{\textrm{c}}\overline{\textrm{c}}})/\textrm{d}y$$ d σ ( c c ¯ ) / d y , and the fragmentation fractions of charm quarks to different charm-hadron species$$f(\textrm{c}\rightarrow {\textrm{h}}_{\textrm{c}})$$ f ( c h c ) , are measured for the first time in p–Pb collisions at$$\sqrt{s_\textrm{NN}} = 5.02~\text {Te}\hspace{-1.00006pt}\textrm{V} $$ s NN = 5.02 Te V at midrapidity ($$-0.96<0.04$$ - 0.96 < y < 0.04 in the centre-of-mass frame) using data collected by ALICE at the CERN LHC. The results are obtained based on all the available measurements of prompt production of ground-state charm-hadron species:$$\textrm{D}^{0}$$ D 0 ,$$\textrm{D}^{+}$$ D + ,$$\textrm{D}_\textrm{s}^{+}$$ D s + , and$$\mathrm {J/\psi }$$ J / ψ mesons, and$$\Lambda _\textrm{c}^{+}$$ Λ c + and$$\Xi _\textrm{c}^{0}$$ Ξ c 0 baryons. The resulting cross section is$$ \textrm{d}\sigma ({{\textrm{c}}\overline{\textrm{c}}})/\textrm{d}y =219.6 \pm 6.3\;(\mathrm {stat.}) {\;}_{-11.8}^{+10.5}\;(\mathrm {syst.}) {\;}_{-2.9}^{+8.3}\;(\mathrm {extr.})\pm 5.4\;(\textrm{BR})\pm 4.6\;(\mathrm {lumi.}) \pm 19.5\;(\text {rapidity shape})+15.0\;(\Omega _\textrm{c}^{0})\;\textrm{mb} $$ d σ ( c c ¯ ) / d y = 219.6 ± 6.3 ( stat . ) - 11.8 + 10.5 ( syst . ) - 2.9 + 8.3 ( extr . ) ± 5.4 ( BR ) ± 4.6 ( lumi . ) ± 19.5 ( rapidity shape ) + 15.0 ( Ω c 0 ) mb , which is consistent with a binary scaling of pQCD calculations from pp collisions. The measured fragmentation fractions are compatible with those measured in pp collisions at$$\sqrt{s} = 5.02$$ s = 5.02 and 13 TeV, showing an increase in the relative production rates of charm baryons with respect to charm mesons in pp and p–Pb collisions compared with$$\mathrm {e^{+}e^{-}}$$ e + e - and$$\mathrm {e^{-}p}$$ e - p collisions. The$$p_\textrm{T}$$ p T -integrated nuclear modification factor of charm quarks,$$R_\textrm{pPb}({\textrm{c}}\overline{\textrm{c}})= 0.91 \pm 0.04\;\mathrm{(stat.)} ^{+0.08}_{-0.09}\;\mathrm{(syst.)} ^{+0.05}_{-0.03}\;\mathrm{(extr.)} \pm 0.03\;\mathrm{(lumi.)}$$ R pPb ( c c ¯ ) = 0.91 ± 0.04 ( stat . ) - 0.09 + 0.08 ( syst . ) - 0.03 + 0.05 ( extr . ) ± 0.03 ( lumi . ) , is found to be consistent with unity and with theoretical predictions including nuclear modifications of the parton distribution functions. 
    more » « less
  5. Abstract A search is reported for charge-parity$$CP$$ CP violation in$${{{\textrm{D}}}^{{0}}} \rightarrow {{\textrm{K}} _{\text {S}}^{{0}}} {{\textrm{K}} _{\text {S}}^{{0}}} $$ D 0 K S 0 K S 0 decays, using data collected in proton–proton collisions at$$\sqrt{s} = 13\,\text {Te}\hspace{-.08em}\text {V} $$ s = 13 Te V recorded by the CMS experiment in 2018. The analysis uses a dedicated data set that corresponds to an integrated luminosity of 41.6$$\,\text {fb}^{-1}$$ fb - 1 , which consists of about 10 billion events containing a pair of b hadrons, nearly all of which decay to charm hadrons. The flavor of the neutral D meson is determined by the pion charge in the reconstructed decays$${{{\textrm{D}}}^{{*+}}} \rightarrow {{{\textrm{D}}}^{{0}}} {{{\mathrm{\uppi }}}^{{+}}} $$ D + D 0 π + and$${{{\textrm{D}}}^{{*-}}} \rightarrow {\overline{{\textrm{D}}}^{{0}}} {{{\mathrm{\uppi }}}^{{-}}} $$ D - D ¯ 0 π - . The$$CP$$ CP asymmetry in$${{{\textrm{D}}}^{{0}}} \rightarrow {{\textrm{K}} _{\text {S}}^{{0}}} {{\textrm{K}} _{\text {S}}^{{0}}} $$ D 0 K S 0 K S 0 is measured to be$$A_{CP} ({{\textrm{K}} _{\text {S}}^{{0}}} {{\textrm{K}} _{\text {S}}^{{0}}} ) = (6.2 \pm 3.0 \pm 0.2 \pm 0.8)\%$$ A CP ( K S 0 K S 0 ) = ( 6.2 ± 3.0 ± 0.2 ± 0.8 ) % , where the three uncertainties represent the statistical uncertainty, the systematic uncertainty, and the uncertainty in the measurement of the$$CP$$ CP asymmetry in the$${{{\textrm{D}}}^{{0}}} \rightarrow {{\textrm{K}} _{\text {S}}^{{0}}} {{{\mathrm{\uppi }}}^{{+}}} {{{\mathrm{\uppi }}}^{{-}}} $$ D 0 K S 0 π + π - decay. This is the first$$CP$$ CP asymmetry measurement by CMS in the charm sector as well as the first to utilize a fully hadronic final state. 
    more » « less