skip to main content


Title: Impact of Vertical Wind Shear on Gravity Wave Propagation in the Land–Sea-Breeze Circulation at the Equator
The impact of vertical wind shear on the land–sea-breeze circulation at the equator is explored using idealized 2D numerical simulations and a simple 2D linear analytical model. Both the idealized and linear analytical models indicate Doppler shifting and attenuation effects coexist under the effect of vertical wind shear for the propagation of gravity waves that characterize the land–sea-breeze circulation. Without a background wind, the idealized sea breeze has two ray paths of gravity waves that extend outward and upward from the coast. A uniform background wind causes a tilting of the two ray paths due to Doppler shifting. With vertical shear in the background wind, the downstream ray path of wave propagation can be rapidly attenuated near a certain level, whereas the upstream ray path is not attenuated and the amplitudes even increase with height. The downstream attenuation level is found to descend with increasing linear wind shear. The present analytical model establishes that the attenuation level corresponds to the critical level where the background wind is equal to the horizontal gravity wave phase speed. The upstream gravity wave ray path can propagate upward without attenuation as there is no critical level there.  more » « less
Award ID(s):
1712290
NSF-PAR ID:
10158512
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of the Atmospheric Sciences
Volume:
76
Issue:
10
ISSN:
0022-4928
Page Range / eLocation ID:
3247 to 3265
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The impact of the environmental background wind on the diurnal cycle near tropical islands is examined in observations and an idealized model. Luzon Island in the northern Philippines is used as an observational test case. Composite diurnal cycles of CMORPH precipitation are constructed based on an index derived from the first empirical orthogonal function (EOF) of ERA5 zonal wind profiles. A strong precipitation diurnal cycle and pronounced offshore propagation in the leeward direction tends to occur on days with a weak, offshore prevailing wind. Strong background winds, particularly in the onshore direction, are associated with a suppressed diurnal cycle. Idealized high resolution 2-D Cloud Model 1 (CM1) simulations test the dependence of the diurnal cycle on environmental wind speed and direction by nudging the model base-state toward composite profiles derived from the reanalysis zonal wind index. These simulations can qualitatively replicate the observed development, strength, and offshore propagation of diurnally generated convection under varying wind regimes. Under strong background winds, the land-sea contrast is reduced, which leads to a substantial reduction in the strength of the sea-breeze circulation and precipitation diurnal cycle. Weak offshore prevailing winds favor a strong diurnal cycle and offshore leeward propagation, with the direction of propagation highly sensitive to the background wind in the lower free troposphere. Offshore propagation speed appears consistent with density current theory rather than a direct coupling to a single gravity wave mode, though gravity waves may contribute to a destabilization of the offshore environment. 
    more » « less
  2. Abstract This study investigates the sensitivities of mesoscale convective system (MCS) low-frequency gravity waves to changes in the vertical wind and thermodynamic profile through idealized cloud model simulations, highlighting how internal MCS processes impact low-frequency gravity wave generation, propagation, and environmental influence. Spectral analysis is performed on the rates of latent heat release, updraft velocity, and deep-tropospheric descent ahead of the convection as a signal for vertical wavenumber wave passage. Results show that perturbations in midlevel descent up to 100 km ahead of the MCS occur at the same frequency as gravity wave generation prompted by fluctuations in latent heat release due to the cellular variations of the MCS updrafts. Within a nocturnal environment, the frequency of the cellularity of the updrafts increases, subsequently increasing the frequency of wave generation. In an environment with low-level unidirectional shear, results indicate that wave generation mechanisms and environmental influence are similar among the simulated daytime and nocturnal MCSs. When deep vertical wind shear is incorporated, many of the low-frequency waves are strong enough to support cloud development ahead of the MCS as well as sustain and support convection. 
    more » « less
  3. Abstract

    Understanding variations in the received power levels for land‐based high frequency radar (HFR) systems is critical to advancing radar‐based estimates of winds and waves. We use a long‐term record of one‐way HFR power observations to explore the key factors controlling propagation losses over the ocean. Observed propagation loss was quantified using an 8‐month record of radio frequency power from a shore‐based transmitter, received at two locations: an offshore tower and a nearby island. Observations were compared to environmental factors such as wind speed and air temperature as well as models of path loss incorporating smooth and rough surface impedances and varying atmospheric properties. Significant differences in the observations at the two sites existed. One‐way path loss variations at the tower, a wavelength above mean sea level, were closely related to atmospheric forcing, while variations at the distant island site were dominated by wind‐driven surface gravity wave variability. Seasonal variability in ocean conductivity had no significant effect on over‐ocean path losses. Simplistic analytical models of path loss were found to have more skill than either ground wave propagation models or more complex numerical models of field strength in matching the observations, due in part to under‐observation of the atmosphere but also the differences in rough surface impedance between models of ocean waves.

     
    more » « less
  4. Abstract This study examines the role of the relative wind (RW) effect (wind relative to ocean current) in the regional ocean circulation and extratropical storm track in the South Indian Ocean. Comparison of two high-resolution regional coupled model simulations with/without the RW effect reveals that the most conspicuous ocean circulation response is the significant weakening of the overly energetic anticyclonic standing eddy off Port Elizabeth, South Africa, a biased feature ascribed to upstream retroflection of the Agulhas Current (AC). This opens a pathway through which the AC transports the warm and salty water mass from the subtropics, yielding marked increases in sea surface temperature (SST), upward turbulent heat flux (THF), and meridional SST gradient in the Agulhas retroflection region. These thermodynamic and dynamic changes are accompanied by the robust strengthening of the local low-tropospheric baroclinicity and the baroclinic wave activity in the atmosphere. Examination of the composite lifecycle of synoptic-scale storms subjected to the high THF events indicates a robust strengthening of the extratropical storms far downstream. Energetics calculations for the atmosphere suggest that the baroclinic energy conversion from the basic flow is the chief source of increased eddy available potential energy, which is subsequently converted to eddy kinetic energy, providing for the growth of transient baroclinic waves. Overall, the results suggest that the mechanical and thermal air-sea interactions are inherently and inextricably linked together to substantially influence the extratropical storm tracks in the South Indian Ocean. 
    more » « less
  5. Abstract

    Observed supercell updrafts consistently produce the fastest mid- to upper-tropospheric vertical velocities among all modes of convection. Two hypotheses for this feature are investigated. In the dynamic hypothesis, upward, largely rotationally driven pressure gradient accelerations enhance supercell updrafts relative to other forms of convection. In the thermodynamic hypothesis, supercell updrafts have more low-level inflow than ordinary updrafts because of the large vertical wind shear in supercell environments. This large inflow makes supercell updrafts wider than that of ordinary convection and less susceptible to the deleterious effects of entrainment-driven updraft core dilution on buoyancy. These hypotheses are tested using a large suite of idealized supercell simulations, wherein vertical shear, CAPE, and moisture are systematically varied. Consistent with the thermodynamic hypothesis, storms with the largest storm-relative flow have larger inflow, are wider, have larger buoyancy, and have faster updrafts. Analyses of the vertical momentum forcing along trajectories shows that maximum vertical velocities are often enhanced by dynamic pressure accelerations, but this enhancement is accompanied by larger downward buoyant pressure accelerations than in ordinary convection. Integrated buoyancy along parcel paths is therefore a strong constraint on maximum updraft speeds. Thus, through a combination of processes consistent with the dynamic and thermodynamic hypotheses, supercell updrafts are able to realize a larger percentage of CAPE than ordinary updrafts.

     
    more » « less