skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Eliciting Student Scratch Script Understandings via Scratch Charades
With many school districts nationwide integrating Computer Science (CS) and Computational Thinking (CT) instruction at the K-8 level, it is crucial researchers closely inspect the relationship between program expression and student understandings. In this study, we propose and report on our use of Scratch Charades, a game in which students act out Scratch scripts while others build them. The purpose of Scratch Charades is to familiarize students with scripts and blocks without the cognitive overhead of the complex user interface. However, in this study, we also used it to elicit student understandings about Scratch blocks and scripts to design mnemonics to help students debug their code. We propose two building and/or debugging strategies based on our observations.  more » « less
Award ID(s):
1760055 1660871
PAR ID:
10158761
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
SIGCSE '20: Proceedings of the 51st ACM Technical Symposium on Computer Science Education
Page Range / eLocation ID:
780 to 786
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We describe a tangible block editor for the educational programming language Scratch that allows blind and visually impaired (BVI) students to learn computer programming concepts alongside their sighted peers in mainstream classrooms. In this late breaking work, we provide a description of the design that incorporates many of the key elements of the Scratch visual code editor that promote engagement and lower hurdles to programming. The environment allows a BVI student to work collaboratively with other BVI and sighted students, being accessible to all. Key elements of the design include: the use of magnets and local shape to ensure only blocks with valid syntax can be connected, the allowance of nested expressions through expansion of code structures with telescoping tubing, and a channel grid work surface that provides structure to aid students working with the much narrower field of view of haptics, as compared to vision. 
    more » « less
  2. A literature review revealed that students learning computational thinking via Scratch often require substantial teacher support. We surveyed grade 6-9 teachers to learn their perceptions of student engagement with computational thinking (CT) and how well their needs are met by existing CT learning systems. The results led us to extend the trend of balancing Scratch’s agency with structure to better serve learners and reduce burden on teachers aiming to learn and teach CT. In this paper, we review architecture and implementation strategies developed to integrate Parsons Programming Puzzles (PPPs) with Scratch, and then analyze their effects on adults, who crucially influence the education of their children. The results from our pilot study suggest PPPs catalyze CT motivation, reduce extraneous cognitive load, and increase learning efficiency without jeopardizing performance on transfer tasks. 
    more » « less
  3. While several introductory computer science curricula exist for children in K-8, there are few options that go beyond sequence, loops, and basic conditionals. The goal of this project is to not only fill this gap with a high-quality curriculum supported by complete instructional materials, but to also do so with an equity-balanced curriculum. That is, a curriculum that values advancing equity equally with student learning outcomes. In this paper, we intro- duce barriers to equity in public school classrooms, pedagogical approaches to culturally-relevant curricula, and how our Scratch Encore curriculum is designed to support equity-balanced learn- ing. Finally, we present results of our pilot year, including early evidence of students taking advantage of the culturally-relevant design aspects. 
    more » « less
  4. The focus of this paper is to investigate how elementary students learned computer science concepts through storytelling in Scratch. To serve this purpose, we conducted artifact interviews with 4th graders who were engaged with a computer science (CS) integrated module in their English language arts (ELA) class. Students created stories in Scratch with a focus on character traits. The constructionist design of the Scratch tool supports student learning through tinkering, the creation of meaningful artifacts, and through the theatrical metaphor that underlies interface design. This paper explores how two 4th graders demonstrated their CS/CT and ELA knowledge through the design of a Scratch artifact and how Scratch facilitated this interdisciplinary learning. While there have been studies in middle school and in after-school contexts that focus on digital storytelling and writing, there are few papers that examine interdisciplinary integration in the formal school context at the elementary level. 
    more » « less
  5. Block-based programming has been overwhelmingly successful in revitalizing introductory computing education and in facilitating end-user development. However, poor code quality makes block-based programs hard to understand, modify, and reuse, thus hurting the educational and productivity effectiveness of blocks. There is great potential benefit in empowering programmers in this domain to systematically improve the code quality of their projects. Refactoring--improving code quality while preserving its semantics--has been widely adopted in traditional software development. In this work, we introduce refactoring to Scratch. We define four new Scratch refactorings: Extract Custom Block, Extract Parent Sprite, Extract Constant, and Reduce Variable Scope. To automate the application of these refactorings, we enhance the Scratch programming environment with powerful program analysis and transformation routines. To evaluate the utility of these refactorings, we apply them to remove the code smells detected in a representative dataset of 448 Scratch projects. We also conduct a between-subjects user study with 24 participants to assess how our refactoring tools impact programmers. Our results show that refactoring improves the subjects' code quality metrics, while our refactoring tools help motivate programmers to improve code quality. 
    more » « less