skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, January 16 until 2:00 AM ET on Friday, January 17 due to maintenance. We apologize for the inconvenience.


Title: Stabilization of the cohomology of thickenings
For a local complete intersection subvariety $X = V (I)$ in $P^n$ over a field of characteristic zero, we show that, in cohomological degrees smaller than the codimension of the singular locus of $X$, the cohomology of vector bundles on the formal completion of $P^n$ along $X$ can be effectively computed as the cohomology on any sufficiently high thickening $X_t = V (I^t)$; the main ingredient here is a positivity result for the normal bundle of $X$. Furthermore, we show that the Kodaira vanishing theorem holds for all thickenings $X_t$ in the same range of cohomological degrees; this extends the known version of Kodaira vanishing on $X$, and the main new ingredient is a version of the Kodaira- Akizuki-Nakano vanishing theorem for $X$, formulated in terms of the cotangent complex.  more » « less
Award ID(s):
1800355
PAR ID:
10159157
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
American journal of mathematics
ISSN:
1080-6377
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. For a finite dimensional vector spaceVVof dimensionnn, we consider the incidence correspondence (or partial flag variety)X⊂<#comment/>PV×<#comment/>PV∨<#comment/>X\subset \mathbb {P}V \times \mathbb {P}V^{\vee }, parametrizing pairs consisting of a point and a hyperplane containing it. We completely characterize the vanishing and non-vanishing behavior of the cohomology groups of line bundles onXXin characteristicp>0p>0. Ifn=3n=3thenXXis the full flag variety ofVV, and the characterization is contained in the thesis of Griffith from the 70s. In characteristic00, the cohomology groups are described for allVVby the Borel–Weil–Bott theorem. Our strategy is to recast the problem in terms of computing cohomology of (twists of) divided powers of the cotangent sheaf on projective space, which we then study using natural truncations induced by Frobenius, along with careful estimates of Castelnuovo–Mumford regularity. Whenn=3n=3, we recover the recursive description of characters from recent work of Linyuan Liu, while for generalnnwe give character formulas for the cohomology of a restricted collection of line bundles. Our results suggest truncated Schur functions as the natural building blocks for the cohomology characters.

     
    more » « less
  2. We give a proof of the slope classicality theorem in classical and higher Coleman theory for modular curves of arbitrary level using the completed cohomology classes attached to overconvergent modular forms. The latter give an embedding of the quotient of overconvergent modular forms by classical modular forms, which is the obstruction space for classicality in either cohomological degree, into a unitary representation of GL 2 ( ℚ p ) . The U p operator becomes a double coset, and unitarity yields slope vanishing. 
    more » « less
  3. Abstract Given a profinite group G of finite p -cohomological dimension and a pro- p quotient H of G by a closed normal subgroup N , we study the filtration on the Iwasawa cohomology of N by powers of the augmentation ideal in the group algebra of H . We show that the graded pieces are related to the cohomology of G via analogues of Bockstein maps for the powers of the augmentation ideal. For certain groups H , we relate the values of these generalized Bockstein maps to Massey products relative to a restricted class of defining systems depending on H . We apply our study to prove lower bounds on the p -ranks of class groups of certain nonabelian extensions of $\mathbb {Q}$ and to give a new proof of the vanishing of Massey triple products in Galois cohomology. 
    more » « less
  4. Abstract We prove a 1979 conjecture of Lusztig on the cohomology of semi-infinite Deligne–Lusztig varieties attached to division algebras over local fields. We also prove the two conjectures of Boyarchenko on these varieties. It is known that in this setting, the semi-infinite Deligne–Lusztig varieties are ind-schemes comprised of limits of certain finite-type schemes X h {X_{h}} . Boyarchenko’s two conjectures are on the maximality of X h {X_{h}} and on the behavior of the torus-eigenspaces of their cohomology. Both of these conjectures were known in full generality only for division algebras with Hasse invariant 1 / n {1/n} in the case h = 2 {h=2} (the “lowest level”) by the work of Boyarchenko–Weinstein on the cohomology of a special affinoid in the Lubin–Tate tower. We prove that the number of rational points of X h {X_{h}} attains its Weil–Deligne bound, so that the cohomology of X h {X_{h}} is pure in a very strong sense. We prove that the torus-eigenspaces of the cohomology group H c i ⁢ ( X h ) {H_{c}^{i}(X_{h})} are irreducible representations and are supported in exactly one cohomological degree. Finally, we give a complete description of the homology groups of the semi-infinite Deligne–Lusztig varieties attached to any division algebra, thus giving a geometric realization of a large class of supercuspidal representations of these groups. Moreover, the correspondence θ ↦ H c i ⁢ ( X h ) ⁢ [ θ ] {\theta\mapsto H_{c}^{i}(X_{h})[\theta]} agrees with local Langlands and Jacquet–Langlands correspondences. The techniques developed in this paper should be useful in studying these constructions for p -adic groups in general. 
    more » « less
  5. Abstract We determine the mod $p$ cohomological invariants for several affine group schemes $G$ in characteristic $p$. These are invariants of $G$-torsors with values in étale motivic cohomology, or equivalently in Kato’s version of Galois cohomology based on differential forms. In particular, we find the mod 2 cohomological invariants for the symmetric groups and the orthogonal groups in characteristic 2, which Serre computed in characteristic not 2. We also determine all operations on the mod $p$ étale motivic cohomology of fields, extending Vial’s computation of the operations on the mod $p$ Milnor K-theory of fields. 
    more » « less